Hydrobiologia

, Volume 683, Issue 1, pp 25–34 | Cite as

A community-based framework for aquatic ecosystem models

  • Dennis Trolle
  • David P. Hamilton
  • Matthew R. Hipsey
  • Karsten Bolding
  • Jorn Bruggeman
  • Wolf M. Mooij
  • Jan H. Janse
  • Anders Nielsen
  • Erik Jeppesen
  • J. Alex Elliott
  • Vardit Makler-Pick
  • Thomas Petzoldt
  • Karsten Rinke
  • Mogens R. Flindt
  • George B. Arhonditsis
  • Gideon Gal
  • Rikke Bjerring
  • Koji Tominaga
  • Jochem’t Hoen
  • Andrea S. Downing
  • David M. Marques
  • Carlos R. FragosoJr.
  • Martin Søndergaard
  • Paul C. Hanson
Opinion Paper

Abstract

Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through a literature survey, we document the growing importance of numerical aquatic ecosystem models while also noting the difficulties, up until now, of the aquatic scientific community to make significant advances in these models during the past two decades. Through a common forum for aquatic ecosystem modellers we aim to (i) advance collaboration within the aquatic ecosystem modelling community, (ii) enable increased use of models for research, policy and ecosystem-based management, (iii) facilitate a collective framework using common (standardised) code to ensure that model development is incremental, (iv) increase the transparency of model structure, assumptions and techniques, (v) achieve a greater understanding of aquatic ecosystem functioning, (vi) increase the reliability of predictions by aquatic ecosystem models, (vii) stimulate model inter-comparisons including differing model approaches, and (viii) avoid ‘re-inventing the wheel’, thus accelerating improvements to aquatic ecosystem models. We intend to achieve this as a community that fosters interactions amongst ecologists and model developers. Further, we outline scientific topics recently articulated by the scientific community, which lend themselves well to being addressed by integrative modelling approaches and serve to motivate the progress and implementation of an open source model framework.

Keywords

Ecological modelling Open source Model development 

Notes

Acknowledgments

We are grateful to CLEAR (a “Villum Kann Rasmussen Centre of Excellence Project on lake restoration”) for providing funding support for the workshop on Lake Ecosystem Modelling, Silkeborg, Denmark, 20–22 September 2010, and to GLEON (Global Lake Ecological Observatory Network), CRES (Centre for Regional Change in the Earth System) and REFRESH (a project on Adaptive Strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, funded under the EU 7th Framework Programme), for additional funding support.

References

  1. Arhonditsis, G. B., M. Winder, M. T. Brett & D. E. Schindler, 2004. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA). Water Research 38: 4013–4027.PubMedCrossRefGoogle Scholar
  2. Burger, D. F., D. P. Hamilton & C. A. Pilditch, 2008. Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecological Modelling 211: 411–423.CrossRefGoogle Scholar
  3. Chan, W. S., F. Recknagel, H. Cao & H. D. Park, 2007. Elucidation and short-term forecasting of microcystin concentrations in Lake Suwa (Japan) by means of artificial neural networks and evolutionary algorithms. Water Research 41: 2247–2255.PubMedCrossRefGoogle Scholar
  4. De Stasio, B. T., D. K. Hill, J. M. Kleinhans, N. P. Nibbelink & J. J. Magnuson, 1996. Potential effects of global climate change on small north-temperate lakes: physics, fish, and plankton. Limnology and Oceanography 41: 1136–1149.CrossRefGoogle Scholar
  5. Elliott, J., 2010. The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biology 16: 864–876.CrossRefGoogle Scholar
  6. Elliott, J. A. & L. May, 2008. The sensitivity of phytoplankton in Loch Leven (UK) to changes in nutrient load and water temperature. Freshwater Biology 53: 32–41.Google Scholar
  7. Frigg, R. & S. Hartmann, 2006. Models in science. In The Stanford Encyclopedia of Philosophy, Spring 2006 Edition.Google Scholar
  8. Grimm, V., E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback, H. H. Thulke, J. Weiner, T. Wiegand & D. L. DeAngelis, 2005. Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science 310: 987–991.PubMedCrossRefGoogle Scholar
  9. Hambright, K. D., M. Gophen & S. Serruya, 1994. Influence of long-term climatic changes on the stratification of a subtropical, warm monomictic lake. Limnology and Oceanography 39: 1233–1242.CrossRefGoogle Scholar
  10. Hambright, K. D., W. Eckert, P. R. Leavitt & C. L. Schelske, 2004. Effects of historical lake level and land use on sediment and phosphorus accumulation rates in Lake Kinneret. Environmental Science and Technology 38: 6460–6467.CrossRefGoogle Scholar
  11. Hamilton, D. P., 1999. Numerical modelling and lake management: applications of the DYRESM model. In Tundisi, J. G. & M. Straskraba (eds), Theoretical Reservoir Ecology and Its Applications. Backhuys Publishers, The Netherlands: 153–174.Google Scholar
  12. Hipsey, M. R., J. P. Antenucci & J. D. Brookes, 2008. A generic, process-based model of microbial pollution in aquatic systems. Water Resources Research 44: W07408.CrossRefGoogle Scholar
  13. Jørgensen, S. E., 1995. State of the art of ecological modelling in limnology. Ecological Modelling 78: 101–115.CrossRefGoogle Scholar
  14. Makler-Pick, V., G. Gal, J. Shapiro & M. R. Hipsey, 2011. Exploring the role of fish in a lake ecosystem (Lake Kinneret, Israel) by coupling an individual-based fish population model to a dynamic ecosystem model. Canadian Journal of Fisheries and Aquatic Sciences 68: 1265–1284.Google Scholar
  15. Mooij, W. M., J. H. Janse, L. N. De Senerpont Domis, S. Hülsmann & B. W. Ibelings, 2007. Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia 584: 443–454.CrossRefGoogle Scholar
  16. Mooij, W. M., D. Trolle, E. Jeppesen, G. Arhonditsis, P. V. Belolipetsky, D. B. R. Chitamwebwa, A. G. Degermendzhy, D. L. De Angelis, L. N. De Senerpont Domis, A. S. Downing, J. A. Elliott, C. R. Fragoso Jr, U. Gaedke, S. N. Genova, R. D. Gulati, L. Håkanson, D. P. Hamilton, M. R. Hipsey, J. Hoen, S. Hülsmann, F. H. Los, V. Makler-Pick, T. Petzoldt, I. G. Prokopkin, K. Rinke, S. A. Schep, K. Tominaga, A. A. Van Dam, E. H. Van Nes, S. A. Wells & J. H. Janse, 2010. Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquatic Ecology 44: 633–667.CrossRefGoogle Scholar
  17. Pennell, C. & T. Reichler, 2011. On the effective number of climate models. Journal of Climate 24: 2358–2367.CrossRefGoogle Scholar
  18. Randall, D. A., R. A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. Srinivasan, R. J. Stouffer, A. Sumi & K. E. Taylor, 2007. Climate models and their evaluation. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  19. Rigler, F. H. & R. H. Peters, 1995. Science and Limnology. Ecology Institute, Oldendurf/Luhe: 239 pp.Google Scholar
  20. Robson, B. J. & D. P. Hamilton, 2004. Three-dimensional modelling of a Microcystis bloom event in the Swan River estuary, Western Australia. Ecological Modelling 174: 203–222.CrossRefGoogle Scholar
  21. Schmolke, A., P. Thorbek, D. L. DeAngelis & V. Grimm, 2010. Ecological models supporting environmental decision making: a strategy for the future. Trends in Ecology & Evolution 25: 479–486.CrossRefGoogle Scholar
  22. Spillman, C. M., D. P. Hamilton & J. Imberger, 2009. Management strategies to optimise sustainable clam (Tapes philippinarum) harvests in Barbamarco Lagoon, Italy. Estuarine, Coastal and Shelf Science 81: 267–278.CrossRefGoogle Scholar
  23. Trolle, D., H. Skovgaard & E. Jeppesen, 2008. The Water Framework Directive: Setting the phosphorus loading target for a deep lake in Denmark using the 1D lake ecosystem model DYRESM-CAEDYM. Ecological Modelling 219: 138–152.CrossRefGoogle Scholar
  24. Trolle, D., D. P. Hamilton, C. A. Pilditch, I. C. Duggan & E. Jeppesen, 2011. Predicting the effects of climate change on trophic status of three morphologically varying lakes: Implications for lake restoration and management. Environmental Modelling and Software 26: 354–370.CrossRefGoogle Scholar
  25. van Ginkel, C., H. Cao, F. Recknagel & S. du Plessis, 2007. Forecasting of dinoflagellate blooms in warm-monomictic hypertrophic reservoirs in South Africa by means of rule-based agents. Water SA 33: 531–538.Google Scholar
  26. Wallace, B. B., M. C. Bailey & D. P. Hamilton, 2000. Simulation of vertical position of buoyancy regulating Microcystis aeruginosa in a shallow eutrophic lake. Aquatic Sciences 62(4): 320–333.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Dennis Trolle
    • 1
  • David P. Hamilton
    • 2
  • Matthew R. Hipsey
    • 3
  • Karsten Bolding
    • 1
    • 4
  • Jorn Bruggeman
    • 4
    • 5
  • Wolf M. Mooij
    • 6
  • Jan H. Janse
    • 7
  • Anders Nielsen
    • 1
    • 8
  • Erik Jeppesen
    • 1
    • 9
  • J. Alex Elliott
    • 10
  • Vardit Makler-Pick
    • 11
  • Thomas Petzoldt
    • 12
  • Karsten Rinke
    • 13
  • Mogens R. Flindt
    • 14
  • George B. Arhonditsis
    • 15
  • Gideon Gal
    • 16
  • Rikke Bjerring
    • 1
  • Koji Tominaga
    • 17
    • 18
  • Jochem’t Hoen
    • 19
  • Andrea S. Downing
    • 19
  • David M. Marques
    • 20
  • Carlos R. FragosoJr.
    • 21
  • Martin Søndergaard
    • 1
  • Paul C. Hanson
    • 22
  1. 1.Department of BioscienceAarhus UniversitySilkeborgDenmark
  2. 2.Centre for Biodiversity and Ecology ResearchUniversity of WaikatoHamiltonNew Zealand
  3. 3.School of Earth and EnvironmentUniversity of Western AustraliaCrawleyAustralia
  4. 4.Bolding & Burchard ApSAsperupDenmark
  5. 5.Department of Earth SciencesUniversity of OxfordOxfordUK
  6. 6.Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  7. 7.Netherlands Environmental Assessment Agency (PBL)BilthovenThe Netherlands
  8. 8.Department of AgroecologyAarhus University, Research Centre FoulumTjeleDenmark
  9. 9.SINO-DANISH Research CentreBeijingChina
  10. 10.Algal Modelling Unit, Lake Ecosystem GroupCentre for Ecology and Hydrology LancasterBailriggUK
  11. 11.Oranim Academic College of EducationKiryat TivonIsrael
  12. 12.Faculty of Forest, Geo and Hydro Sciences, Institute of HydrobiologyTechnische Universitaet DresdenDresdenGermany
  13. 13.Department of Lake ResearchHelmholtz Centre for Environmental Research-UFZMagdeburgGermany
  14. 14.Institute of BiologyUniversity of Southern DenmarkOdense MDenmark
  15. 15.Ecological Modeling Laboratory, Department of Physical & Environmental SciencesUniversity of TorontoTorontoCanada
  16. 16.Kinneret Limnological LaboratoryIOLRMigdalIsrael
  17. 17.Department of BiologyUniversity of OsloOsloNorway
  18. 18.Norwegian Institute for Water ResearchOsloNorway
  19. 19.Aquatic Ecology and Water Quality Management Group, Department of Environmental SciencesWageningen UniversityWageningenThe Netherlands
  20. 20.Instituto de Pesquisas Hidráulicas (IPH)Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  21. 21.Centre for TechnologyFederal University of AlagoasMaceióBrazil
  22. 22.Center for LimnologyUniversity of WisconsinMadisonUSA

Personalised recommendations