, Volume 687, Issue 1, pp 71–84 | Cite as

Genetic structure and differentiation at a short-time scale of the introduced calcarean sponge Paraleucilla magna to the western Mediterranean

  • Magdalena Guardiola
  • Johanna Frotscher
  • María J. Uriz


The allochthonous calcarean sponge Paraleucilla magna has proliferated in the western Mediterranean during the last decade, where it currently shows a highly patchy distribution with dense populations in the neighboring of sea farms and slightly eutrophised marinas, and more sparse populations in well-preserved habitats. To gain knowledge about the species invasive capacity, we studied spatial genetic differentiation and structure, clonality, and temporal differentiation, in three close populations of P. magna at the NE of the Iberian Peninsula, in three successive years. The study hypothesis was that the species is able to proliferate under favorable conditions in newly colonized habitats but populations can easily disappear where perturbations occur with some frequency. Samples were genotyped for nine polymorphic microsatellites. Spatial genetic structure was found in the three populations of 2006. One population disappeared in 2007, and the other two remained slightly differentiated, while the three populations were in place again in 2008, and showed very low (but significant) FST values, and non-significant D values. Low but statistically significant differentiation also occurred for the three populations between years. Results showed high-allele diversity, but heterozygote deficit and changes in allele frequencies in the populations over the 3 years, which are consistent with some genetic drift. The whole population descriptors pointed to the species as a good opportunistic colonizer as it has been hypothesized, but highly sensitive to stochastic events affecting recruitment. This suggests a high impact of the species in favorable habitats (sea culture and sheltered zones) and a low-medium influence in native communities.


Calcarean sponges Microsatellites Population genetics Introduced species D versus FST estimators 


  1. Addison, J. A. & M. W. Hart, 2005. Spawning, copulation and inbreeding coefficients in marine invertebrates. Biology Letters 1: 450–453.PubMedCrossRefGoogle Scholar
  2. Agell, G., J. Frotscher, M. Guardiola, M. Pascual & M. J. Uriz, in press. Characterization of nine microsatellite loci for the calcarean sponge Paraleucilla magna Klautau et al. 2004 introduced to the Mediterranean Sea. Conservation Genetics. doi:10.1007/s12686-011-9560-Y.
  3. Astanei, I., E. Gosling, J. Wilson & E. Powell, 2005. Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Molecular Ecology 14: 1655–1666.PubMedCrossRefGoogle Scholar
  4. Briggs, J. C., 2007. Marine biogeography and ecology: invasions and introductions. J. Biogeo. 34: 193–198.CrossRefGoogle Scholar
  5. Blanquer, A. & M. J. Uriz, 2010. Population genetics at three spatial scales of rare sponge living in fragmented habitats. BMC Evolutionary Biology 10: 13.PubMedCrossRefGoogle Scholar
  6. Blanquer, A., M. J. Uriz & J. Caujapé-Castells, 2009. Small-scale spatial genetic structure in Scopalina lophyropoda, an encrusting sponge with philopatric larval dispersal and frequent fission and fussion events. Marine Ecology Progress Series 380: 95–102.CrossRefGoogle Scholar
  7. Calderón, I., N. Ortega, S. Duran, M. Becerro, M. Pascual & X. Turon, 2007. Finding the relevant scale: clonality and genetic structure in a marine invertebrate (Crambe crambe, Porifera). Molecular Ecology 16: 1799–1810.PubMedCrossRefGoogle Scholar
  8. Carlon, D. B., 1999. The evolution of mating systems in tropical reef corals. Trends in Ecology & Evolution 14: 491–495.CrossRefGoogle Scholar
  9. Coles, S. L., R. C. DeFelice, & L. G. Eldredge, 2002. Non indigenous marine species in Kane’Ohe Bay, O’Ahu, Hawaii. Bishop Museum Hawaii. Biological Survey Technical Report, Honolulu, 24: 353 pp.Google Scholar
  10. Crawford, N. G., 2010. SMOGD: software for the measurement of genetic diversity. Molecular Ecology Resources 10: 556–557.PubMedCrossRefGoogle Scholar
  11. DeFelice, R. C., L. G. Eldredge & J. T. Carlton, 2001. A guidebook of introduced marine species in Hawaii. Non indigenous marine invertebrates. In Eldredge, L. G. & C. M. Smith (eds), Bishop Museum Technical Report, Honolulu, 21: 70 pp.Google Scholar
  12. Dailianis, T. & C. S. Tsigenopoulos, 2010. Characterization of polymorphic microsatellite markersfor the endangered Mediterranean bath sponge Spongia officinalis L. Conservation Genetics 11: 1155–1158.CrossRefGoogle Scholar
  13. Dailianis T., C. S. Tsigenopoulos, C. Dounas & E. Voultsiadou, 2011. Genetic diversity of the imperiled bath sponge Spongia officinalis Linnaeus, 1759 across the Mediterranean sea: patterns of population differentiation and implications for taxonomy and conservation. Molecular Ecology (in press).Google Scholar
  14. Duran, S. M. Pascual, A. Estoup, & X. Turon, 2004a. Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Molecular Ecology, 13: 511–522.Google Scholar
  15. Duran, S., M. Pascual & X. Turon, 2004b. Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Marine Biology 144: 31–35.CrossRefGoogle Scholar
  16. Evanno, G. S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14(8): 2611–2620.Google Scholar
  17. Ereskovsky, A. V., 2010. Development of Sponges from the Class Calcarea Bowerbank, 1864 In The Comparative Embryology of Sponges. Springer, Dordrecht, Chapt. 1: 3–36.Google Scholar
  18. Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.Google Scholar
  19. Falush, D., M. Stephens & J. K. Pritchard, 2003. Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164: 1567–1587.PubMedGoogle Scholar
  20. Falush, D., M. Stephens & J. K. Pritchard, 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7: 574–578.PubMedCrossRefGoogle Scholar
  21. Frotscher, P. J. & M. J., Uriz, 2008. Reproduction and life cycle of the calcarean sponge Paraleucilla magna in the Mediterranean Sea. XV Simposio Ibérico de Estudios de Bentos Marino, Blanes, Book of Abstracts.Google Scholar
  22. Galil, B. S., 2006. The Suez Canal. The marine caravan—the Suez Canal and the erythrean invasion. Monographiae Biologicae 83: 207–300.Google Scholar
  23. Gerlach, G., A. Jueterbock, P. Kraemer, J. Deppermann & P. Harmand, 2010. Calculations of population differentiation based on GST and D: forget GST but not all of statistics! Molecular Ecology 19: 3845–3852.PubMedCrossRefGoogle Scholar
  24. Goudet, J., M. Raymond, T. de-Meeus & F. Rousset, 1996. Testing differentiation in diploid populations. Genetics 144(4): 1933–1940.PubMedGoogle Scholar
  25. Grosberg, R. K., 1987. Limited dispersal and proximity-dependent mating success in the colonial ascidian Botryllus schlosseri. Evolution 41: 372–384.CrossRefGoogle Scholar
  26. Hubisz, M., D. Falush, M. Stephens & J. Pritchard, 2009. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9: 1322–1332.PubMedCrossRefGoogle Scholar
  27. Jost, L., 2008. GST and its relatives do not measure differentiation. Molecular Ecology 17(18): 40.CrossRefGoogle Scholar
  28. Kaiser, J. & R. Gallagher, 1997. Does diversity lure invaders? Science 277: 1204–1205.CrossRefGoogle Scholar
  29. Klautau, M., L. C. Monteiro & R. Borojevic, 2004. First occurrence of the genus Paraleucilla (Calcarea, Porifera) in the Atlantic Ocean: P. magna sp. nv. Zootaxa 710:1–8.Google Scholar
  30. Longo, C., F. Mastrototaro & G. Corriero, 2007. Occurrence of Paraleucilla magna (Porifera:Calcarea) in the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom 87: 1749–1755.CrossRefGoogle Scholar
  31. Manly, B. F. J., 1997. Randomization, bootstrap and Monte Carlo methods in biology. Chapman& Hall Computational Statistics 24(2): 371–372.Google Scholar
  32. Meirmans, P. & P. W. Hedrick, 2011. Assessing population structure: F ST and related measures. Molecular Ecology Resources 11(1): 5–18.PubMedCrossRefGoogle Scholar
  33. Pascual, M., J. Balanyà, A. Latorre & L. Serra, 1997. Analysis of the variability of Drosophila azteca and Drosophila athabasca populations revealed by random amplified polymorphic DNA. Journal of Zoological Systematics and Evolutionary Research 35: 159–164.Google Scholar
  34. Perez, T., B. Perrin, S. Carteron, J. Vacelet & N. Boury-Esnault, 2006. Celtodoryx girardae gen nov.sp.nov., a new sponge species (Poecilosclerida: Demospongiae) invading the Gulf of Morbihan (North East Atlantic, France). Cahiers de Biologie Marine 47: 205–214.Google Scholar
  35. Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedGoogle Scholar
  36. Raymond, M. & F. Rousset, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.Google Scholar
  37. Rousset, F., 2008. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8: 103–106.PubMedCrossRefGoogle Scholar
  38. Stenberg, P. & M. Lundmark, 2002. MLGsim: a program for detecting clones using a simulation approach. Umea University, Umea.Google Scholar
  39. Streftaris, N. & A. Zenetos, 2006. Alien marine species in the Mediterranean—the 100 ‘worst invasives’ and their impact. Mediterranean Marine Science 7: 87–118.Google Scholar
  40. Thomsen, M. S., T. Wernberg, J. D. Olden, J. N. Griffin & B. R. Silliman, 2011. A framework to study the context-dependent impacts of marine invasions. Journal of Experimental Marine Biology and Ecology 400: 322–327.CrossRefGoogle Scholar
  41. Uriz, M. J., 1982. Morfología y comportamiento, de la larva parenquímula de Scopalina lophyropoda Schmidt 1862 (demospongia, Halichondria) y la formación del rhagon. Investigación Pesquera 42:213–322.Google Scholar
  42. Uriz, M. J., M. Maldonado, X. Turon & R. Martí, 1998. How reproductive output, larval behaviour, and recruitment contribute to adult spatial patterns in Mediterranean encrusting sponges? Marine Ecology Progress Series 167: 137–148.CrossRefGoogle Scholar
  43. Uriz, M. J., X. Turon & S. Mariani, 2008. Ultrastructure and dispersal potential of sponge larvae: tufted versus evenly ciliated parenchymellae. Marine Ecology 29(2): 280–297.CrossRefGoogle Scholar
  44. Van Oosterhout, C., W. F. Hutchinson, D. P. Wills & P. Shipley, 2004. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4(3): 535–538.CrossRefGoogle Scholar
  45. Xavier J., 2010. Biodiversity and phylogeography of Northeast Atlantic and Mediterranean sponges. PhD dissertation. University of Amsterdam, Amsterdam: 149 pp.Google Scholar
  46. Weir, B. S. & C. C. Cockerman, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.CrossRefGoogle Scholar
  47. Zammit, P. P., C. Longo & P. J. Schembri, 2009. Occurrence of Paraleucilla magna Klautau et al., 2004 (porífera: Calcarea) in Malta. Mediterranean Marine Science 10(2): 135–138.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Magdalena Guardiola
    • 1
  • Johanna Frotscher
    • 2
  • María J. Uriz
    • 1
  1. 1.Centre d’Estudis Avançats de Blanes, CEAB-CSICBlanesSpain
  2. 2.Forschungsanstalt Geisenheim, Von-Lade-StraßeGeisenheimGermany

Personalised recommendations