, Volume 681, Issue 1, pp 35–47 | Cite as

Water quality of Loch Leven: responses to enrichment, restoration and climate change

  • L. CarvalhoEmail author
  • C. Miller
  • B. M. Spears
  • I. D. M. Gunn
  • H. Bennion
  • A. Kirika
  • L. May


It is usually assumed that climate change will have negative impacts on water quality and hinder restoration efforts. The long-term monitoring at Loch Leven shows, however, that seasonal changes in temperature and rainfall may have positive and negative impacts on water quality. In response to reductions in external nutrient loading, there have been significant reductions in in-lake phosphorus concentrations. Annual measures of chlorophyll a have, however, shown little response to these reductions. Warmer spring temperatures appear to be having a positive effect on Daphnia densities and this may be the cause of reduced chlorophyll a concentrations in spring and an associated improvement in water clarity in May and June. The clearest climate impact was the negative relationship between summer rainfall and chlorophyll a concentrations. This is highlighted in extreme weather years, with the three wettest summers having very low chlorophyll a concentrations and the driest summers having high concentrations. To predict water quality impacts of future climate change, there is a need for more seasonal predictions from climate models and a greater recognition that water quality is the outcome of seasonal responses in different functional groups of phytoplankton and zooplankton to a range of environmental drivers.


Lake Recovery Chlorophyll a Phosphorus Nitrogen Temperature Rainfall Daphnia 



Most of the sample collection and analysis for this research was funded by the Natural Environment Research Council with additional support from the European Union (FP6 Integrated Project ‘Euro-limpacs: European project to evaluate impacts of global change on freshwater ecosystems’ GOCE-CT-2003-505540). The authors also gratefully acknowledge Kinross Estates for providing access to the loch and for assistance with fieldwork. Loch Leven is part of the UK Environmental Change Network (


  1. APHA, 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed. American Public Health Association, Washington.Google Scholar
  2. Bailey-Watts, A. E. & A. Kirika, 1987. A re-assessment of the phosphorus inputs to Loch Leven (Kinross, Scotland): rationale and an overview of results on instantaneous loadings with special reference to runoff. Earth Sciences 78: 351–367.Google Scholar
  3. Bailey-Watts, A. E. & A. Kirika, 1999. Poor water quality in Loch Leven (Scotland) in 1995, in spite of reduced phosphorus loadings since 1985: the influences of catchment management and inter-annual weather variation. Hydrobiologia 403: 135–151.CrossRefGoogle Scholar
  4. Bailey-Watts, A. E., A. Kirika, L. May & D. H. Jones, 1990. Changes in phytoplankton over various time scales in a shallow, eutrophic: the Loch Leven experience with special reference to the influence of flushing rate. Freshwater Biology 23: 85–111.CrossRefGoogle Scholar
  5. Battarbee, R. W., N. J. Anderson, E. Jeppesen & P. R. Leavitt, 2005. Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwater Biology 50: 1772–1780.CrossRefGoogle Scholar
  6. Bennion, H., J. Fluin, P. Appleby & B. Ferrier, 2001. Palaeolimnological investigation of Scottish freshwater lochs. Final Report to SNIFFER No. SR(00)02. ENSIS Ltd, University College London, London.Google Scholar
  7. Bennion, H., J. Fluin & G. L. Simpson, 2004. Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. Journal of Applied Ecology 41: 124–138.CrossRefGoogle Scholar
  8. Bowman, A. & A. Azzalini, 1997. Applied Smoothing Techniques for Data Analysis. Clarendon Press, Oxford.Google Scholar
  9. Carss, D., B. M. Spears, L. Quinn & R. Cooper, 2011. Long-term variations in waterfowl populations in Loch Leven: identifying discontinuities between local and national trends. Hydrobiologia. doi:10.1007/s10750-011-0927-6.
  10. Carvalho, L. & B. Moss, 1995. The current status of a sample of English Sites of Special Scientific Interest subject to eutrophication. Aquatic Conservation 5: 191–204.CrossRefGoogle Scholar
  11. Carvalho, L., M. Beklioglu & B. Moss, 1995. Changes in a deep lake following sewage diversion—a challenge to the orthodoxy of external phosphorus control as a restoration strategy? Freshwater Biology 34: 399–410.CrossRefGoogle Scholar
  12. Carvalho, L., G. Phillips, S. Maberly & R. Clarke, 2006. Chlorophyll and phosphorus classifications for UK Lakes. Final Report to SNIFFER (Project WFD38), Edinburgh, October 2006: 81 pp.Google Scholar
  13. Carvalho, L., A. Solimini, G. Phillips, M. van den Berg, O.-P. Pietiläinen, A. Lyche, S. Poikane & U. Mischke, 2008. Chlorophyll reference conditions for European Intercalibration lake types. Aquatic Ecology 42: 203–211.CrossRefGoogle Scholar
  14. Carvalho, L., A. G. Solimini, G. Phillips, O.-P. Pietiläinen, J. Moe, A. C. Cardoso, A. Lyche Solheim, I. Ott, M. Søndergaard, G. Tartari & S. Rekolainen, 2009. Site-specific chlorophyll reference conditions for lakes in Northern and Western Europe. Hydrobiologia 633: 59–66.CrossRefGoogle Scholar
  15. D’Arcy, B. J., L. May, J. Long, I. R. Fozzard, S. Greig & A. Brachet, 2006. The restoration of Loch Leven, Scotland, UK. Water Science Technology 53: 183–191.PubMedCrossRefGoogle Scholar
  16. Dudley, B., I. D. M. Gunn, L. Carvalho, I. Proctor, M. T. O’Hare, K. J. Murphy & A. Milligan, 2011. Changes in aquatic macrophyte communities in Loch Leven: evidence of recovery from eutrophication? Hydrobiologia doi:10.1007/s10750-011-0924-9.
  17. Elmore, J. L., 1983. The influence of temperature on egg development times of three species of Diaptomus from subtropical Florida. American Midland Naturalist 109: 300–308.CrossRefGoogle Scholar
  18. European Parliament, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000, establishing a framework for community action in the field of water policy. Official Journal of the European Communities L327/1: 1–72.Google Scholar
  19. Ferguson, C. A., E. M. Scott, A. W. Bowman & L. Carvalho, 2007. Model comparison for a complex ecological system. Journal of the Royal Statistical Society Series A 170: 691–711.CrossRefGoogle Scholar
  20. Ferguson, C. A., L. Carvalho, E. M. Scott, A. W. Bowman & A. Kirika, 2008. Assessing ecological responses to environmental change using statistical models. Journal of Applied Ecology 45: 193–203.CrossRefGoogle Scholar
  21. Ferguson, C. A., A. W. Bowman, E. M. Scott & L. Carvalho, 2009. Multivariate varying-coefficient models for an ecological system. Environmetrics 20: 460–476.CrossRefGoogle Scholar
  22. Golterman, H. L., R. S. Clymo & M. A. M. Ohnstad, 1978. Methods for Physical and Chemical Analysis of Freshwaters, 2nd ed. Blackwell Scientific, Oxford.Google Scholar
  23. Gunn, I. D. M., M. T. O’Hare, P. S. Maitland & L. May, 2011. Long-term trends in Loch Leven invertebrate communities. Hydrobiologia. doi:10.1007/s10750-011-0926-7.
  24. Hanazato, T. & M. Yasuno, 1985. Effect of temperature in the laboratory studies on growth, egg development and first parturition of five species of Cladocera. Japanese Journal of Limnology 46: 185–191.CrossRefGoogle Scholar
  25. Hastie, T. & R. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall, London.Google Scholar
  26. HMSO, 1981. Methods for the Examination of Waters & Associated Materials: Book Number 40. Oxidised Nitrogen in Waters. HMSO, London.Google Scholar
  27. Holden, A. V. & L. A. Caines, 1974. Nutrient chemistry of Loch Leven, Kinross. Proceedings of the Royal Society of Edinburgh, B 74: 101–121.Google Scholar
  28. Holm-Hansen, O. & B. Riemann, 1978. Chlorophyll a determination: improvements in methodology. Oikos 30: 438–447.CrossRefGoogle Scholar
  29. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Kohler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Noges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willen & M. Winder, 2005. Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  30. Johnston, D. W., A. J. Holding & J. E. McCluskie, 1974. Preliminary comparative studies of denitrification and methane production in Loch Leven, Kinross, and other freshwater lakes. Proceedings of the Royal Society of Edinburgh, B 74: 123–134.Google Scholar
  31. LLAMAG, 1993. Loch Leven Area Management Advisory Group Report. Scottish Natural Heritage, Battleby, Perth, UK.Google Scholar
  32. LLCMP, 1999. Loch Leven Catchment Management Plan: The Report of the Loch Leven Area Management Advisory Group.Google Scholar
  33. May, L. & L. Carvalho, 2010. Maximum growing depth of macrophytes in Loch Leven, Scotland, United Kingdom, in relation to historical changes in estimated phosphorus loading. Hydrobiologia 646: 123–131.CrossRefGoogle Scholar
  34. May, L. & B. M. Spears, 2011. A history of scientific research at Loch Leven, Kinross, Scotland. Hydrobiologia. doi:10.1007/s10750-011-0929-4.
  35. May, L. L. H. Defew, H. Bennion & A. Kirika, 2011. Historical changes (1905–2005) in external phosphorus loads to Loch Leven, Scotland, UK. Hydrobiologia. doi:10.1007/s10750-011-0922-y.
  36. Moss, B., T. Barker, D. Stephen, A. Williams, D. Balayla, M. Beklioglu & L. Carvalho, 2005. Consequences of reduced nutrient loading on a lake system in a lowland catchment: deviations from the norm? Freshwater Biology 50: 1687–1705.CrossRefGoogle Scholar
  37. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chemica Acta 27: 31–36.CrossRefGoogle Scholar
  38. Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.PubMedCrossRefGoogle Scholar
  39. Phillips, G., A. Kelly, J. Pitt, R. Sanderson & E. Taylor, 2005. The recovery of a very shallow eutrophic lake, 20 years after the control of effluent derived phosphorus. Freshwater Biology 50: 1628–1638.CrossRefGoogle Scholar
  40. Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  41. Reynolds, C. S. & J. W. G. Lund, 1988. The phytoplankton of an enriched, soft-water lake subject to intermittent hydraulic flushing (Grasmere, English Lake District). Freshwater Biology 19: 379–404.CrossRefGoogle Scholar
  42. Sas, H., 1989. Lake Restoration by Reduction of Nutrient Loading. Academia Verlag Richartz GmbH, St. Augustin.Google Scholar
  43. Schindler, D. W., 1977. The evolution of phosphorus limitation in lakes. Science 195: 260–262.PubMedCrossRefGoogle Scholar
  44. Smith, V. H., S. B. Joye & R. W. Howarth, 2006. Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography 51: 351–355.CrossRefGoogle Scholar
  45. Søndergaard, M., E. Jeppesen, T. Lauridsen, S. C. H. van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.CrossRefGoogle Scholar
  46. Spears, B. M. & I. D. Jones, 2010. The long-term (1979–2005) effects of the North Atlantic Oscillation Index on wind-induced wave mixing in Loch Leven (Scotland). Hydrobiologia 646: 49–59.CrossRefGoogle Scholar
  47. Spears, B. M., L. Carvalho, R. Perkins, A. Kirika & D. M. Paterson, 2007a. Sediment P cycling in a large shallow lake: spatio-temporal variation in phosphorus pools and release. Hydrobiologia 584: 37–48.CrossRefGoogle Scholar
  48. Spears, B. M., L. Carvalho & D. M. Paterson, 2007b. Phosphorus partitioning in a shallow lake: implications for water quality management. Water and Environment Journal 21: 47–53.CrossRefGoogle Scholar
  49. Spears B. M., L. Carvalho, R. Perkins, A. Kirika & D. M. Paterson, 2011. Long-term variation and regulation of internal phosphorus loading in Loch Leven Hydrobiologia. doi:10.1007/s10750-011-0921-z.
  50. UK TAG, 2008. UK Environmental Standards and Conditions (Phase 2). Final Report (SR1–2007), March 2008. SNIFFER, Edinburgh.Google Scholar
  51. West, G., 1910. A further contribution to a comparative study of the dominant phanerogamic and higher cryptogamic flora of aquatic habitat in Scottish lakes. Proceedings of the Royal Society of Edinburgh 30: 65–181.Google Scholar
  52. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd ed. Springer, New York.Google Scholar
  53. Whitehead, P. G., R. L. Wilby, R. W. Battarbee, M. Kernan & A. J. Wade, 2009. A review of the potential impacts of climate change on surface water quality. Hydrological Sciences 54: 101–123.CrossRefGoogle Scholar
  54. Winfield, I. J., C. E. Adams, J. D. Armstrong, R. Gardiner, A. Kirika, J. Montgomery, B. M. Spears, D. C. Stewart, J. E. Thorpe & W. Wilson, 2011. Changes in the fish community of Loch Leven: untangling anthropogenic pressures. Hydrobiologia. doi:10.1007/s10750-011-0925-8.

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • L. Carvalho
    • 1
    Email author
  • C. Miller
    • 2
  • B. M. Spears
    • 1
  • I. D. M. Gunn
    • 1
  • H. Bennion
    • 3
  • A. Kirika
    • 1
  • L. May
    • 1
  1. 1.Centre for Ecology & HydrologyPenicuik, MidlothianUK
  2. 2.School of Mathematics and StatisticsUniversity of Glasgow, University GardensGlasgowUK
  3. 3.Environmental Change Research Centre, Department of GeographyUniversity College LondonLondonUK

Personalised recommendations