Advertisement

Hydrobiologia

, Volume 681, Issue 1, pp 23–33 | Cite as

Long-term variation and regulation of internal phosphorus loading in Loch Leven

  • B. M. SpearsEmail author
  • L. Carvalho
  • R. Perkins
  • A. Kirika
  • D. M. Paterson
LOCH LEVEN RESEARCH

Abstract

Long-term monitoring data (1968–2008) were used to investigate internal phosphorus (P) loading following external P loading reduction in shallow Loch Leven, Scotland. A whole-lake sediment P inventory (upper 3 cm of sediment; 2005) suggested a release-potential of 29.7 tonnes (t) from the release sensitive sediment P pools. 18.5 t was contained within shallow water sediments (<4.5 m water depth) with 7.6 t in deeper water sediments below the photic zone (>5 m water depth). The “observed” release (<5.1 t), estimated using a water column P mass balance approach (1989–2008), was <5.1 t, indicating the presence of regulating mechanisms. Observed P release declined between 1989 and 2008, with the exception of 2003–2006. Observed P release estimates were positively correlated with annual average water column P concentration after 1989, highlighting the role of internal loading in maintaining poor water quality conditions after management intervention. Multiple regression analysis suggested that internal loading was driven by the wave mixed depth in spring (positive driver), summer water temperature (positive driver) and spring water clarity transparency (negative driver). The potential importance of biological and physico-chemical feedback mechanisms in the regulation of benthic–pelagic coupling and water quality in Loch Leven are discussed.

Keywords

Sediment Phosphorus Internal loading Weather Water quality Recovery Eutrophication 

Notes

Acknowledgments

We would like to acknowledge Mr. Jamie Montgomery and, his father, Sir David Montgomery for their continued support, enthusiasm and assistance throughout the project. We would also like to thank Willie Wilson, of Loch Leven Fisheries, for his invaluable advice and support during the project and for the provision of weather data. Finally, we wish to thank Dr. Martin Søndergaard (NERI, Denmark) and Dr. Andrea Kelly (the Broads Authority, UK) for useful comments that led to the improvement of the manuscript. This project was funded by the Natural Environment Research Council, UK.

References

  1. Andersson, G., W. Granéli & J. Stenson, 1988. The influence of animals on phosphorus cycling in lake ecosystems. Hydrobiologia 170: 267–284.CrossRefGoogle Scholar
  2. Bailey-Watts, A. E. & A. Kirika, 1999. Poor water quality in Loch Leven (Scotland) in 1995, in spite of reduced phosphorus loading since 1985: the influences of catchment management and inter-annual weather variation. Hydrobiologia 403: 135–151.CrossRefGoogle Scholar
  3. Boström, B., J. M. Anderson, S. Fleischer & M. Jansson, 1988. Exchange of phosphorus across the sediment–water interface. Hydrobiologia 170: 229–244.CrossRefGoogle Scholar
  4. Calvert, S. E., 1974. The distribution of bottom sediments in Loch Leven, Kinross. Proceedings of the Royal Society of Edinburgh B 74: 69–80.Google Scholar
  5. Canfield, D. E. Jr., K. A. Langeland, S. B. Linda & W. T. Haller, 1985. Relations between water transparency and maximum depth of macrophyte colonization in lakes. Journal of Aquatic Plant Management 23: 25–28.Google Scholar
  6. Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.CrossRefGoogle Scholar
  7. Carvalho, L., M. Beklioglu & B. Moss, 1995. Changes in a deep lake following sewage diversion – a challenge to the orthodoxy of external phosphorus control as a restoration strategy? Freshwater Biology 34: 399–410.CrossRefGoogle Scholar
  8. Carvalho, L., C. Ferguson, I. Gunn, H. Bennion, B. Spears, A. Kirika & L. May, 2011. Water quality of Loch Leven: responses to enrichment, restoration and climate change. Hydrobiologia. doi: 10.1007/s10750-011-0923-x.
  9. Cyr, H., 1998a. How does vertical distribution of chlorophyll vary in littoral sediments of small lakes? Freshwater Biology 40: 25–40.CrossRefGoogle Scholar
  10. Cyr, H., 1998b. Effects of wave disturbance and substrate slope on sediment characteristics in the littoral zone of small lakes. Canadian Journal of Fisheries and Aquatic Sciences 55: 967–976.CrossRefGoogle Scholar
  11. D’Arcy, B. J., L. May, J. Long, I. R. Fozzard, S. Greig & A. Brachet, 2006. The restoration of Loch Leven, Scotland. Water Science and Technology 53: 181–191.Google Scholar
  12. Douglas, R. W. & B. Rippey, 2000. The random redistribution of sediment by wind in a lake. Limnology and Oceanography 45: 686–694.CrossRefGoogle Scholar
  13. Doyle, R. D., 2001. Effects of waves on the early growth of Vallisneria americanna. Freshwater Biology 46: 389–397.CrossRefGoogle Scholar
  14. Farmer, J. G., A. E. Bailey-Watts, A. Kirika & C. Scott, 1994. Phosphorus fractionation and mobility in Loch Leven sediments. Aquatic Conservation: Marine and Freshwater Ecosystems 4: 45–56.CrossRefGoogle Scholar
  15. Granéli, W. & D. Solander, 1998. Influence of aquatic macrophytes in lakes. Hydrobiologia 170: 245–266.CrossRefGoogle Scholar
  16. Hilton, J., 1985. A conceptual framework for predicting the occurrence of sediment focussing and sediment redistribution in small lakes. Limnology and Oceanography 30: 1131–1143.CrossRefGoogle Scholar
  17. Holden, A. V. & L. A. Caines, 1974. Nutrient chemistry of Loch Leven, Kinross. Proceedings of the Royal Society of Edinburgh B 74: 101–121.Google Scholar
  18. Jenson, H. S. & F. Ø. Andersen, 1992. Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnology and Oceanography 37: 577–589.CrossRefGoogle Scholar
  19. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Kohler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Noges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willen & M. Winder, 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  20. Jiang, X., X. Jin, Y. Yao, L. Li & F. Wu, 2006. Effects of oxygen on the release and distribution of phosphorus in the sediments under the light condition. Environmental Pollution 141: 482–487.PubMedCrossRefGoogle Scholar
  21. Jin, X., X. Jiang, Y. Yao, L. Li & F. Wu, 2006. Effects of light and oxygen on the uptake and distribution of phosphorus at the sediment–water interface. Science of the total Environment 357: 231–236.PubMedCrossRefGoogle Scholar
  22. Jones, P. D., T. Jonsson & D. Wheeler, 1997. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. International Journal of Climatology 17: 1433–1450.CrossRefGoogle Scholar
  23. Jupp, B. P. & D. H. N. Spence, 1977. Limitations on macrophytes in a eutrophic lake, Loch Leven. II Wave action, sediments, and water fowl grazing. The Journal of Ecology 65: 175–186.CrossRefGoogle Scholar
  24. Kirby, R. P., 1971. The bathymetrical resurvey of Loch Leven, Kinross. Geographical Journal 137: 372–378.CrossRefGoogle Scholar
  25. LLAMAG, 1993. Loch Leven: the report of the Loch Leven area management advisory group. Forth River Purification Board, Edinburgh.Google Scholar
  26. May, L. & L. Carvalho, 2010. Maximum growing depth of macrophytes in Loch Leven, Scotland, United Kingdom in relation to historical changes in estimated phosphorus loading. Hydrobiologia 646: 123–131.CrossRefGoogle Scholar
  27. May, L., L. H. Defew, H. Bennion & A. Kirika, 2011. Historical changes (1905–2005) in external phosphorus loads to Loch Leven, Scotland, UK. Hydrobiologia. doi: 10.1007/s10750-011-0922-y.
  28. Mehner, T. M., T. Diekmann, P. Gonsiorczyk, R. Kasprzak, L. Koschel, M. Krienitz, M. Rumpf, G. Schulz & Wauer, 2008. Rapid recovery from eutrophication of a stratified lake by disruption of internal nutrient load. Ecosystems 11: 1142–1156.CrossRefGoogle Scholar
  29. Monteith, D. T., C. D. Evans & B. Reynolds, 2000. Are temporal variations in the nitrate content of UK upland freshwaters linked to the North Atlantic Oscillation? Hydrological Processes 14: 1745–1749.CrossRefGoogle Scholar
  30. Phillips, G., A. Kelly, J. Pitt, R. Sanderson & E. Taylor, 2005. The recovery of a very shallow lake, 20 years after the control of effluent driver phosphorus. Freshwater Biology 50: 1628–1638.CrossRefGoogle Scholar
  31. Rip, W., 2007. Cyclic state shifts in a restored shallow lake. Thesis, Wageningen University. ISBN 978-90-8504-706-3.Google Scholar
  32. Rip, W., M. R. L. Ouboter, E. H. van Ness & B. Beltman, 2005. Long term oscillation of a shallow lake ecosystem upon reduction in external phosphorus load. Archiv für Hydrobiologie 164: 387–409.CrossRefGoogle Scholar
  33. Scheffer, M., 2001. Ecology of shallow lakes. Kluwer Academic Press, London.Google Scholar
  34. Scheffer, M., D. Straile, E. H. van Nes & H. Hosper, 2001. Climatic warming causes regime shifts in lake food webs. Limnology and Oceanography 46: 1780–1783.CrossRefGoogle Scholar
  35. Sas, H., 1989. Lake restoration by reduction of nutrient loading. Academic Verlag Richarz, St. Augustin.Google Scholar
  36. Smith, I. R., 1974. The structure and physical environment of Loch Leven, Scotland. Proceedings of the Royal Society of Edinburgh B 74: 81–100.Google Scholar
  37. Søndergaard, M., 1989. Phosphorus release from a hypertrophic lake sediment: experiments with intact sediment cores in a continuous flow system. Archive für Hydrobiologie 116: 45–59.Google Scholar
  38. Søndergaard, M., 2007. Nutrient dynamics in lakes – with emphasis on phosphorus, sediment and lake restorations. DSc. Thesis. National Environmental Research Institute, University of Aarhus, Denmark: 276 pp.Google Scholar
  39. Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arrresø, Denmark. Hydrobiologia 228: 91–99.CrossRefGoogle Scholar
  40. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2005. Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes. Freshwater Biology 50: 1605–1615.CrossRefGoogle Scholar
  41. Spears, B. M., 2007. Benthic–pelagic nutrient cycling in shallow lakes: investigating the functional role of benthic microalgae. PhD Thesis, University of St Andrews.Google Scholar
  42. Spears, B. M. & I. Jones, 2010. The long-term (1978–2005) effects of the North Atlantic oscillation on wind-induced wave mixing in Loch Leven (Scotland). Hydrobiologia 646: 49–59.CrossRefGoogle Scholar
  43. Spears, B. M., L. Carvalho, R. Perkins, A. Kirika & D. M. Paterson, 2006. Spatial and historical variation in sediment phosphorus fractions and mobility in a large shallow lake. Water Research 40: 383–391.PubMedCrossRefGoogle Scholar
  44. Spears, B. M., L. Carvalho, R. Perkins, A. Kirika & D. M. Paterson, 2007. Sediment P cycling in a large shallow lake: spatio-temporal variation in P pools and release. Hydrobiologia 584: 37–48.CrossRefGoogle Scholar
  45. Spears, B. M., L. Carvalho, R. Perkins & D. M. Paterson, 2008. The effects of light on sediment nutrient flux and water column nutrient stoichiometry in a shallow lake. Water Research 42: 977–986.PubMedCrossRefGoogle Scholar
  46. Spears, B. M., I. D. M. Gunn, L. Carvalho, I. J. Winfield, B. Dudley, K. Murphy & L. May, 2009. An evaluation of methods for sampling macrophyte maximum colonisation depth in Loch Leven, Scotland. Aquatic Botany 91: 75–81.CrossRefGoogle Scholar
  47. Straile, D., D. M. Livingstone, G. A. Weyhenmeyer & D. G. George, 2003. The response of freshwater ecosystems to climate variability associated with the North Atlantic oscillation. Geophysical Monographs 134: 263–279.CrossRefGoogle Scholar
  48. Townend, J., 2004. Practical statistics for environmental and biological scientists. Wiley, West Sussex.Google Scholar
  49. van Luijn, F., D. T. van der Molen, W. J. Luttmer & P. C. M. Boers, 1995. Influence of benthic diatoms on the nutrient release from sediments of shallow lakes recovering from eutrophication. Water Science and Technology 32: 89–97.CrossRefGoogle Scholar
  50. van Nes, E., W. Rip & M. Scheffer, 2007. A theory for cyclic shifts between alternative states in shallow lakes. Ecosystems 10: 17–27.CrossRefGoogle Scholar
  51. Wetzel, R. G. & G. E. Likens, 2000. Limnological analyses, 3rd ed. Springer-Verlag, New York.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • B. M. Spears
    • 1
    Email author
  • L. Carvalho
    • 1
  • R. Perkins
    • 2
  • A. Kirika
    • 1
  • D. M. Paterson
    • 3
    • 4
  1. 1.Centre for Ecology & HydrologyPenicuikUK
  2. 2.School of Earth, Ocean and Planetary SciencesCardiff UniversityCardiffUK
  3. 3.Sediment Ecology Research Group, Gatty Marine LaboratoryUniversity of St. AndrewsFifeUK
  4. 4.Scottish Oceans InstituteUniversity of St. AndrewsFifeUK

Personalised recommendations