, Volume 679, Issue 1, pp 297–311 | Cite as

Heterogeneity of buoyancy in response to light between two buoyant types of cyanobacterium Microcystis

  • Yan Xiao
  • Nanqin Gan
  • Jin Liu
  • Lingling Zheng
  • Lirong SongEmail author
Primary Research Paper


Previous investigations suggested that buoyancy state in response to light differed between individuals within natural populations of cyanobacteria. To understand the mechanisms of heterogeneity of buoyancy in different species/strains in relation to light, two types of colonial Microcystis in different buoyancy behavior were selected and used to compare their photosynthetic activity, gas vesicle volume, ballast mass, and migration at varying light regime. The photosynthesis–irradiance curve and F v/F m examination indicated that negatively buoyant strains were more adapted at high irradiance than buoyant ones. Transcription levels of gvp gene and gas vesicle volume decreased in buoyant strains, but increased in negatively buoyant ones at high irradiance. The results indicated that the combination effect of decrease in gas vesicle buoyancy and increase in carbohydrate contributed to the downward migration of buoyant strains, while the significant increase of gas vesicles provided sufficient buoyancy to negate ballast mass, resulting in the upward migration of negatively buoyant ones at high irradiance. In addition, either sinking or floating velocities were elevated in buoyant and negatively buoyant strains, coincidently with the colony enlargement of all strains at high irradiance, respectively. These findings suggest that this heterogeneity was associated with the interplay between gas vesicles, ballast, and colony size. The fact that different species/strains of Microcystis respond diversely to light depending on their physiological conditions presents a good example to understand heterogeneity of buoyancy in the field, and the presence of heterogeneity of buoyancy may be implicated in the dominancy and persistence of Microcystis bloom in ever-changing environment.


Buoyancy Colonial Microcystis Heterogeneity Light Vertical migration 



This work was supported by grants from the National Key Project for Basic Research (2008CB418001, 2008CB418006); the National Natural Science Foundation of China (31070355); and the Natural Science Foundation of China-Yunnan Project (U0833604). We thank Dr. Zhaosheng Chu for his assistant in measurement of gas vesicle volume.


  1. Bradford, M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.PubMedCrossRefGoogle Scholar
  2. Brookes, J. D. & G. G. Ganf, 2001. Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. Journal of Plankton Research 23: 1399–1411.CrossRefGoogle Scholar
  3. Brookes, J. D., G. G. Ganf, D. Green & J. Whittington, 1999. The influence of light and nutrients on buoyancy, filament aggregation and flotation of Anabaena circinalis. Journal of Plankton Research 21: 327–341.CrossRefGoogle Scholar
  4. Brookes, J. D., G. G. Ganf & R. L. Oliver, 2000. Heterogeneity of cyanobacterial gas-vesicle volume and metabolic activity. Journal of Plankton Research 22: 1579–1589.CrossRefGoogle Scholar
  5. Brookes, J. D., R. H. Regel & G. G. Ganf, 2003. Changes in the photo-chemistry of Microcystis aeruginosa in response to light and mixing. New Phytologist 158: 151–164.CrossRefGoogle Scholar
  6. Carmichael, W. W., 2001. Health effects of toxin-producing cyanobacteria: “the Cyano-HABs”. Human and Ecological Risk Assessment 7: 1393–1407.CrossRefGoogle Scholar
  7. Chu, Z. S., X. C. Jin, B. Yang & Q. R. Zeng, 2007. Buoyancy regulation of Microcystis flos-aquae during phosphorus-limited and nitrogen-limited growth. Journal of Plankton Research 29: 739–745.CrossRefGoogle Scholar
  8. Damerval, T., A. M. Castets, G. Guglielmi, J. Houmard & N. Tandeau de Marsac, 1989. Occurrence and distribution of gas vesicle genes among cyanobacteria. Journal of Bacteriology 171: 1445–1452.PubMedGoogle Scholar
  9. Damerval, T., A. M. Castets, J. Houmard & N. Tandeau de Marsac, 1991. Gas vesicle synthesis in the cyanobacterium Pseudanabaena sp.: occurrence of a single photoregulated gene. Molecular Microbiology 5: 657–664.PubMedCrossRefGoogle Scholar
  10. De Figueiredo, D. R., U. M. Azeiteiro, S. M. Esteves, F. J. M. Goncalves & M. J. Pereira, 2004. Microcystin-producing blooms – a serious global public health issue. Ecotoxicology and Environmental Safety 59: 151–163.PubMedCrossRefGoogle Scholar
  11. Deacon, C. & A. E. Walsby, 1990. Gas vesicle formation in the dark, and in light of different irradiances, by the cyanobacterium Microcystis sp. British Phycological Journal 25: 133–139.CrossRefGoogle Scholar
  12. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356.CrossRefGoogle Scholar
  13. Ganf, G. G. & R. L. Oliver, 1982. Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake. Journal of Ecology 70: 829–844.CrossRefGoogle Scholar
  14. Gao, K. & H. Ai, 2004. Relationship of growth and photosynthesis with colony size in an edible cyanobacterium, Ge-Xian-Mi Nostoc (Cyanophyceae). Journal of Phycology 40: 523–526.CrossRefGoogle Scholar
  15. Ghadouani, A., B. Pinel-Alloul & E. E. Prepas, 2003. Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities. Freshwater Biology 48: 363–381.CrossRefGoogle Scholar
  16. Guillard, R. R. L., 1973. Division rates. In Stein, J. R. (ed.), Handbook of Phycological Methods – Culture Methods and Growth Measurements. Cambridge University Press, New York: 289–311.Google Scholar
  17. Hayes, P. K., B. Buchholz & A. E. Walsby, 1992. Gas vesicles are strengthened by the outer-surface protein, GvpC. Archiv fur Microbiologie 157: 229–234.CrossRefGoogle Scholar
  18. Humphries, S. E. & V. D. Lyne, 1988. Cyanophyte blooms: the role of cell buoyancy. Limnology and Oceanography 33: 79–91.CrossRefGoogle Scholar
  19. Ibelings, B. W., L. R. Mur, R. Kinsman & A. E. Walsby, 1991a. Microcystis changes its buoyancy in response to the average irradiance in the surface mixed layer. Archiv fur Hydrobiologie 120: 385–401.Google Scholar
  20. Ibelings, B. W., L. R. Mur & A. E. Walsby, 1991b. Diurnal changes in buoyancy and vertical distribution in populations of Microcystis in two shallow lakes. Journal of Plankton Research 13: 419–436.CrossRefGoogle Scholar
  21. Kinsman, R., B. W. Ibelings & A. E. Walsby, 1991. Gas vesicle collapse by turgor pressure and its role in buoyancy regulation by Anabaena flos-aquae. Journal of General Microbiology 137: 1171–1178.Google Scholar
  22. Konopka, A., 1982. Buoyancy regulation and vertical migration by Oscillatoria rubescens in crooked lake, Indiana. British Phycological Journal 17: 427–442.CrossRefGoogle Scholar
  23. Konopka, A., J. Kromkamp & L. R. Mur, 1987a. Buoyancy regulation in phosphate-limited cultures of Microcystis aeruginosa. FEMS Microbiology Letters 45: 135–142.CrossRefGoogle Scholar
  24. Konopka, A., J. Kromkamp & L. R. Mur, 1987b. Regulation of gas-vesicle content and buoyancy in light- or phosphate-limited cultures of Aphanizomenon flos-aquae (Cyanophyta). Journal of Phycology 23: 70–78.Google Scholar
  25. Kromkamp, J., J. Botterweg & L. R. Mur, 1988. Buoyancy regulation in Microcystis aeruginosa grown at different temperatures. FEMS Microbiology Ecology 53: 231–237.CrossRefGoogle Scholar
  26. Mathot, S., W. O. Smith, C. A. Carlson, D. L. Garrison, M. M. Gowing & C. L. Vickers, 2000. Carbon partitioning within Phaeocystis antarctica (Prymnesiophyceae) colonies in the Ross Sea, Antarctica. Journal of Phycology 36: 1049–1056.CrossRefGoogle Scholar
  27. Maxwell, K. & G. N. Johnson, 2000. Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51: 659–668.PubMedCrossRefGoogle Scholar
  28. Mccausland, M. A., P. A. Thompson & S. I. Blackburn, 2005. Ecophysiological influence of light and mixing on Anabaena circinalis (Nostocales, Cyanobacteria). European Journal of Phycology 40: 9–20.CrossRefGoogle Scholar
  29. Mlouka, A., K. Comte, A. M. Castets, C. Bouchier & N. T. De Marsac, 2004. The gas vesicle gene cluster from Microcystis aeruginosa and DNA rearrangements that lead to loss of cell buoyancy. Journal of Bacteriology 186: 2355–2365.PubMedCrossRefGoogle Scholar
  30. Naselli-Flores, L. & R. Barone, 2000. Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia 438: 65–74.CrossRefGoogle Scholar
  31. Naselli-Flores, L. & R. Barone, 2003. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia 502: 133–143.CrossRefGoogle Scholar
  32. Naselli-Flores, L. & R. Barone, 2007. Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean reservoir (Lake Arancio, Southwestern Sicily). Hydrobiologia 578: 87–95.CrossRefGoogle Scholar
  33. Nusch, E. A., 1980. Comparison on different methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiologie – Beiheft Ergebnisse der Limnologie 14: 14–36.Google Scholar
  34. Olesen, T. D. & G. G. Ganf, 1986. Photosynthate partitioning: a labile, adaptive phenomenon in Microcystis aeruginosa. Archiv fur Hydrobiologie 108: 55–76.Google Scholar
  35. Oliver, R. L., 1994. Floating and sinking in gas-vacuolate cyanobacteria. Journal of Phycology 30: 161–173.CrossRefGoogle Scholar
  36. Oliver, R. L. & A. E. Walsby, 1984. Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flo-aquae (cyanobacteria). Limnology and Oceanography 29: 879–886.CrossRefGoogle Scholar
  37. Oliver, R. L., R. H. Thomas, C. S. Renolds & A. E. Walsby, 1985. The sedimentation of buoyant Microcystis colonies caused by precipitation with an iron-containing colloid. Proceedings of the Royal Society B – Biological Sciences 223: 511–528.CrossRefGoogle Scholar
  38. Padisák, J., E. Soróczki-Pintér & Z. Rezner, 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton – an experimental study. Hydrobiologia 500: 243–257.CrossRefGoogle Scholar
  39. Paerl, H. W., 1983. Partitioning of CO2 fixation in the colonial cyanobacterium Microcystis aeruginosa: mechanism promoting formation of surface scums. Applied and Environmental Microbiology 46: 252–259.PubMedGoogle Scholar
  40. Porat, R., B. Teltsch, A. Perelman & Z. Dubinsky, 2001. Diel buoyancy changes by the cyanobacterium Aphanizomenon ovalisporum from a shallow reservoir. Journal of Plankton Research 23: 753–763.CrossRefGoogle Scholar
  41. Regel, R. H., J. D. Brookes & G. G. Ganf, 2004. Vertical migration, entrainment and photosynthesis of the freshwater dinoflagellate Peridinium cinctum in a shallow urban lake. Journal of Plankton Research 26: 143–157.CrossRefGoogle Scholar
  42. Reynolds, C. S. & A. E. Walsby, 1975. Water-blooms. Biological Reviews 50: 437–481.CrossRefGoogle Scholar
  43. Reynolds, C. S., R. L. Oliver & A. E. Walsby, 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand Journal of Marine and Freshwater Research 21: 379–390.CrossRefGoogle Scholar
  44. Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman & R. Y. Stanier, 1979. Generic assignments, strains histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111: 1–61.Google Scholar
  45. Shen, H. & L. R. Song, 2007. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia 592: 475–486.CrossRefGoogle Scholar
  46. Sommaruga, R., Y. W. Chen & Z. W. Liu, 2009. Multiple strategies of bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters. Microbial Ecology 57: 667–674.PubMedCrossRefGoogle Scholar
  47. Spencer, C. N. & D. L. King, 1987. Regulation of blue-green algal buoyancy and bloom formation by light, inorganic nitrogen, CO2, and trophic level interactions. Hydrobiologia 144: 183–192.CrossRefGoogle Scholar
  48. Thomas, R. H. & A. E. Walsby, 1985. Buoyancy regulation in a strain of Microcystis. Journal of General Microbiology 131: 799–809.Google Scholar
  49. Titman, D., 1975. A fluorometric technique for measuring sinking rates of freshwater phytoplankton. Limnology and Oceanography 20: 869–875.CrossRefGoogle Scholar
  50. Utkilen, H. C., R. L. Oliver & A. E. Walsby, 1985. Buoyancy regulation in a red Oscillatoria unable to collapse gas vacuoles by turgor pressure. Archiv fur Hydrobiologie 102: 319–329.Google Scholar
  51. Visser, P. M., J. Passarge & L. R. Mur, 1997. Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia 349: 99–109.CrossRefGoogle Scholar
  52. Wallace, B. B. & D. P. Hamilton, 1999. The effect of variations in irradiance on buoyancy regulation in Microcystis aeruginosa. Limnology and Oceanography 44: 273–281.CrossRefGoogle Scholar
  53. Wallace, B. B. & D. P. Hamilton, 2000. Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa. Journal of Plankton Research 22: 1127–1138.CrossRefGoogle Scholar
  54. Wallace, B. B., M. C. Bailey & D. P. Hamilton, 2000. Simulation of vertical position of buoyancy regulating Microcystis aeruginosa in a shallow eutrophic lake. Aquatic Sciences 62: 320–333.CrossRefGoogle Scholar
  55. Walsby, A. E., 1994. Gas vesicles. Microbiological Reviews 58: 94–144.PubMedGoogle Scholar
  56. Walsby, A. E., 1997. Numerical integration of phytoplankton photosynthesis through time and depth in a water column. New Phytologist 136: 189–209.CrossRefGoogle Scholar
  57. Walsby, A. E. & M. J. Booker, 1980. Changes in buoyancy of a planktonic blue-green alga in response to light intensity. British Phycological Journal 15: 311–319.CrossRefGoogle Scholar
  58. Walsby, A. E. & G. K. Mcallister, 1987. Buoyancy regulation by Microcystis in Lake Okaro. New Zealand Journal of Marine and Freshwater Research 21: 521–524.CrossRefGoogle Scholar
  59. Walsby, A. E., C. S. Reynolds, R. L. Oliver & J. Kromkamp, 1989. The role of gas vacuoles and carbohydrate content in the buoyancy and vertical distribution of Anabaena minutissima in Lake Rotongaio, New Zealand. Archiv fur Hydrobiologie 32: 1–25.Google Scholar
  60. Walsby, A. E., R. Kinsman & K. I. George, 1992. The measurement of gas vesicle volume and buoyant density in planktonic bacteria. Journal of Microbiological Methods 15: 293–309.CrossRefGoogle Scholar
  61. Wilson, A. E., R. B. Kaul & O. Sarnelle, 2010. Growth rate consequences of coloniality in a harmful phytoplankter. PLoS ONE 5(1): e8679.PubMedCrossRefGoogle Scholar
  62. Wu, Z. X. & L. R. Song, 2008. Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kütz. (Cyanobacteria). Phycologia 47: 98–104.CrossRefGoogle Scholar
  63. Wu, Z. X., N. Q. Gan, Q. Huang & L. R. Song, 2007. Response of Microcystis to copper stress – do phenotypes of Microcystis make a difference in stress tolerance? Environmental Pollution 147: 324–330.PubMedCrossRefGoogle Scholar
  64. Xu, M., X. D. Xu, H. Gao & R. Q. Kong, 2007. High variability of the gvpA-gvpC region in Microcystis. Progress in Natural Science 17: 1290–1295.Google Scholar
  65. Yang, Z., F. X. Kong, X. L. Shi, M. Zhang, P. Xing & H. S. Cao, 2008. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria) during flagellate grazing. Journal of Phycology 44: 716–720.CrossRefGoogle Scholar
  66. Zhang, M., F. X. Kong, X. D. Wu & P. Xing, 2008. Different photochemical responses of phytoplankters from the large shallow Taihu Lake of subtropical China in relation to light and mixing. Hydrobiologia 603: 267–278.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Yan Xiao
    • 1
    • 2
  • Nanqin Gan
    • 1
  • Jin Liu
    • 1
  • Lingling Zheng
    • 1
  • Lirong Song
    • 1
    Email author
  1. 1.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanPeople’s Republic of China
  2. 2.Graduate School of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations