Hydrobiologia

, Volume 677, Issue 1, pp 157–168 | Cite as

Search for Bermuda’s deep water caves

  • Thomas M. Iliffe
  • Rikk Kvitek
  • Steve Blasco
  • Katie Blasco
  • Robert Covill
ANCHIALINE ECOSYSTEMS

Abstract

The mid-Atlantic islands of Bermuda harbor one of the richest and most diverse anchialine communities known from anywhere on Earth. However, all known anchialine caves in Bermuda (maximum depth—26 m) were dry during the last glacial period extending from approximately 9,000 to 115,000 years ago when glacial sea levels were as much as 127 m lower. Since it is highly unlikely that Bermuda’s endemic cave species evolved since the caves were flooded by sea level rise, alternate deeper habitats must have existed to shelter anchiane fauna for prolonged periods of lower sea level during the Pleistocene. In order to systematically search for such now deep water cave habitats, high-resolution multibeam sonar and remotely operated vehicles were used to map and explore the seafloor off Bermuda in 60–200 m depths along the outer shelf break edge of the submarine escarpment surrounding the Bermuda Platform and an adjacent seamount. Specific goals were to discover deep water cave and/or crevicular habitats and to characterize the nature, geological stratification and composition, and sea level history of the platform margin, in particular focusing on features directly relating to Pleistocene low sea stand events. During this sea floor survey, clearly defined paleo-shoreline features generated by wave and current erosion were found to encircle the Bermuda seamount and Challenger Bank at 60 and 120 m depths.

Keywords

Anchialine caves Seafloor mapping Pleistocene Sea level 

Notes

Acknowledgments

This research was funded by a Grant from the NOAA Office of Ocean Exploration to T. Iliffe. Multibeam mapping and ROV investigations were carried out by the Seafloor Mapping Lab (SFML) at California State University, Monterey Bay (CSUMB). Ship time on the R.V. Endurance was provided through the Bermuda Zoological Society (BZS) and the Bermuda Aquarium, Museum and Zoo (BAMZ). The authors thank Texas A&M graduate student Dayla Morrison and Seafloor Mapping Lab students and staff Pat Iampietro (Chief Hydrographer & Technician), Mary Young (UCSC graduate student & SFML hydrographer), Katie Glitz (recent CSUMB graduate and SFML hydrographer), Todd Hallenbeck (CSUMB grad student), Krystle Gomez (CSUMB grad student) and Alexis Hall (CSUMB undergrad student) for assistance with the multibeam and ROV surveys. Special appreciation is extended to Tim Hasselbring (captain of the R/V Endurance), Gil Nolan (local cave diver and member of BZS), Ian Walker (curator for BAMZ), Robbie Smith (curator for BAMZ), Wolfgang Sterrer (curator for BAMZ), Nic Hutchings (alternate captain of the R/V Endurance), Thadeus Murdock (curator for BAMZ), Philippe Rouja (Bermuda Department of Conservation Services), Wendy Tucker (Bermuda Underwater Exploration Institute), and Graham Maddox (Triangle Diving), all of whom played important roles in this research. This article is publication No. 185 of the Bermuda Biodiversity Project (BBP), Bermuda Aquarium, Natural History Museum and Zoo.

References

  1. Bintanja, R., R. S. W. van de Wal & J. Oerlemans, 2005. Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437: 125–128.CrossRefPubMedGoogle Scholar
  2. Boxshall, G. A. & T. M. Iliffe, 1990. Three new species of misophrioid copepods from oceanic islands. Journal of Natural History 24: 595–613.CrossRefGoogle Scholar
  3. Carew, J. L. & J. E. Mylroie, 1987. Submerged evidence of Pleistocene low sea levels on San Salvador, Bahamas. In Cooper, R. A. & A. N. Shepard (eds), National Oceanic and Atmospheric Administration Undersea Program Symposium Series for Undersea Research 2: 167–175.Google Scholar
  4. Clark, P. U., A. S. Dyke, J. D. Shakun, A. E. Carlson, J. Clark, B. Wohlfarth, J. X. Mitrovica, S. W. Hostetler & A. M. McCabe, 2009. The last glacial maximum. Science 325(5941): 710–714.CrossRefPubMedGoogle Scholar
  5. Fornari, D. J., W. B. F. Ryan & P. J. Fox, 1985. Sea-floor lava fields on the East Pacific Rise. Geology 13: 413–416.CrossRefGoogle Scholar
  6. Fosshagen, A. & T. M. Iliffe, 1985. Two new genera of Calanoida and a new order of Copepoda, Platycopioida, from marine caves on Bermuda. Sarsia 70: 345–358.Google Scholar
  7. Harmon, R. S., H. P. Schwarcz & D. C. Ford, 1978. Late Pleistocene sea level history of Bermuda. Quaternary Research 9: 205–218.CrossRefGoogle Scholar
  8. Harmon, R. S., L. S. Land, R. M. Mitterer, P. Garrett, H. P. Schwarcz & G. J. Larson, 1981. Bermuda sea level during the last interglacial. Nature 289: 481–483.CrossRefGoogle Scholar
  9. Hart, C. W. Jr., & R. B. Manning, 1981. The cavernicolous caridean shrimps of Bermuda (Alpheidae, Hippolytidae, and Atyidae). Journal of Crustacean Biology 1(3): 441–456.CrossRefGoogle Scholar
  10. Hart, C. W. Jr., & R. B. Manning, 1986. Two new shrimps (Procarididae and Agostocarididae, new family) from marine caves of the western North Atlantic. Journal of Crustacean Biology 6(3): 408–416.Google Scholar
  11. Hearty, P. J., 2002. Revision of the late Pleistocene stratigraphy of Bermuda. Sedimentary Geology 153(1–2): 1–21.CrossRefGoogle Scholar
  12. Herwitz, S. R., D. R. Muhs, J. M. Prospero, S. W. Mahan & B. Vaughn, 1996. Origin of Bermuda’s clay-rich Quaternary paleosols and their paleoclimatic significance. Journal of Geophysical Research 101(D18): 23389–23400.CrossRefGoogle Scholar
  13. Holthuis, L. B., 1973. Caridean shrimps found in land-locked saltwater pools at four Indo-Pacific localities (Sinai Peninsula, Funafuti Atoll, Maui and Hawaii Islands), with a description of one new genus and four new species. Zoologische Verhandelingen 128: 231–242.Google Scholar
  14. Iliffe, T. M., 2000. Anchialine cave ecology. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Ecosystems of the World: Subterranean Ecosystems, Vol. 30. Elsevier, Amsterdam.Google Scholar
  15. Iliffe, T. M., 2003. Submarine caves and cave biology of Bermuda. NSS News 2003: 217–224.Google Scholar
  16. Iliffe, T. M., 2004. Walsingham Caves, Bermuda: biospeleology. In Gunn, J. (ed.), Encyclopedia of Caves and Karst Science. Fitzroy Dearborn, New York.Google Scholar
  17. Iliffe, T. M., 2009. Bermuda. In Palmer, A. N. & M. V. Palmer (eds), Caves and Karst of the USA. National Speleological Society, Huntsville, AL.Google Scholar
  18. Keating, B., 1985. Submersible observations on the flanks of Johnston Island (Central Pacific Ocean). Proceedings of the Fifth International Coral Reef Symposium, Vol. 6: 413–418.Google Scholar
  19. Mylroie, J. E., J. L. Carew & H. L. Vacher, 1995. Karst development in the Bahamas and Bermuda. Geological Society of America Special Papers 300: 251–267.Google Scholar
  20. Olson, S. L. & P. J. Hearty, 2009. A sustained +21 m sea-level highstand during MIS 11 (400 ka): direct fossil and sedimentary evidence from Bermuda. Quaternary Science Reviews 28(3–4): 271–285.CrossRefGoogle Scholar
  21. Sket, B., 1979. Atlantasellus cavernicolus n. gen., n. sp. (Isopoda Asellota, Atlantasellidae n. fam.) from Bermuda. Bioloski Vestnik, Ljublanjana 27: 175–183.Google Scholar
  22. Smith, D. K. & J. R. Cann, 1998. Mid-Atlantic ridge volcanic processes. Oceanus 41(1): 11–14.Google Scholar
  23. Stanley, D. J. & D. J. P. Swift, 1968. Bermuda’s reef-front platform – bathymetry and significance. Marine Geology 6: 479–500.CrossRefGoogle Scholar
  24. Stock, J. H., J. R. Holsinger, B. Sket & T. M. Iliffe, 1986a. Two new species of Pseudoniphargus (Amphipoda), in Bermudian groundwaters. Zoologica Scripta 15(3): 237–249.CrossRefGoogle Scholar
  25. Stock, J. H., T. M. Iliffe & D. Williams, 1986b. The concept of “anchialine” reconsidered. Stygologia 2(1/2): 90–92.Google Scholar
  26. Verrill, A. E., 1900. Notes on the geology of the Bermudas. American Journal of Science 9(4): 313–340.CrossRefGoogle Scholar
  27. Vogt, P. R. & W.-Y. Jung, 2007. Origin of the Bermuda volcanoes and Bermuda Rise: history, observations, models, and puzzles. In Foulger, G. R. & D. M. Jurdy (eds), Plates, Plumes, and Planetary Processes. Geological Society of America Special Paper 430.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Thomas M. Iliffe
    • 1
  • Rikk Kvitek
    • 2
  • Steve Blasco
    • 3
  • Katie Blasco
    • 3
  • Robert Covill
    • 4
  1. 1.Department of Marine BiologyTexas A&M University at GalvestonGalvestonUSA
  2. 2.Seafloor Mapping LabCalifornia State University, Monterey BaySeasideUSA
  3. 3.Geological Survey of Canada (Atlantic)DartmouthCanada
  4. 4.Tekmap ConsultingFall RiverCanada

Personalised recommendations