Hydrobiologia

, 676:223 | Cite as

Cladocera response to Late Glacial to Early Holocene climate change in a South Carpathian mountain lake

  • János Korponai
  • Enikő Katalin Magyari
  • Krisztina Buczkó
  • Sanda Iepure
  • Tadeusz Namiotko
  • Dániel Czakó
  • Csilla Kövér
  • Mihály Braun
CLADOCERA AS INDICATORS

Abstract

This study explores changes in cladoceran composition in a high mountain lake of the Retezat (Lake Brazi), the South Carpathian Mountains of Romania, during the Late Glacial–Early Holocene (14,500–11,600 cal. yr. bp) transition using a paleolimnological approach. The lake had a species poor cladoceran community throughout this period. Daphnia longispina, Chydorus sphaericus and Alona affinis were the most common, showing marked fluctuations in their relative abundances through time. Distinct faunal response to warming at the Younger Dryas (YD)/Preboreal transition was recorded by increasing fossil densities and distinct community composition change: Alona affinis became dominant while numbers of Chydorus sphaericus dramatically decreased. In the Early Holocene, the productivity of Lake Brazi seem to have increased as reflected by higher numbers of Cladocera due to appearance of new species (Alona rectangula, A. quadrangularis and A. guttata) which are common in productive waters. Significant negative correlation was found between average dorsal length of daphnid ephippia and the NGRIP δ18O isotope values. Given the absence of fish predation, changes in Daphnia ephippia size were taken to indicate climatic change: larger ephippium size inferred cold conditions during the Late Glacial, while smaller size reflected climate warming during the Early Holocene. We conclude that Cladocera fossils are good indicators of climatic change that happened during the transition from the Late Glacial to the Holocene. We found that climatic conditions can be tracked either by size distribution of Daphnia ephippia (larger ephippium size under colder climate) and/or by community change of cladocerans.

Keywords

Cladocera remains Chydorids Climate change Mountain lake Romania 

References

  1. Atkinson, D., 1994. Temperature and organism size—a biological law for ectotherms? Advances in Ecological Research 25: 1–58.CrossRefGoogle Scholar
  2. Battarbee, R. W. (ed.), 2002. Molar: Mountain Lake Research. Journal of Paleolimnology 28: 1–180.Google Scholar
  3. Battarbee, R. W., 2010. Foreword. In Eggermont, H., M. Kernan & K. Martens (eds), Global Change Impacts on Mountain Lakes. Hydrobiologia 648: 1–2.Google Scholar
  4. Battarbee, R. W., M. Kernan & N. Rose, 2009. Threatened and stressed mountain lakes of Europe: assessment and progress. Aquatic Ecosystem Health and Management 12: 118–128.CrossRefGoogle Scholar
  5. Bennet, K. D., 2005. Documentation for psimpoll 4.25 and psimcomb 1.3. C program for plotting pollen diagram and analysing pollen data. http://www.chrono.qub.ac.uk/psimpoll/psimpoll.html.
  6. Birks, H. J. B. & A. D. Gordon, 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London.Google Scholar
  7. Björck, S., M. J. C. Walker, L. C. Cwynar, S. Johnsen, K. L. Knudsen, J. J. Lowe & B. Wohlfarth, INTIMATE members, 1998. An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13: 283–292.Google Scholar
  8. Black, R. W. II. & N. G. Hairston Jr., 1988. Predator driven changes in community structure. Oecologia 77: 468–479.CrossRefGoogle Scholar
  9. Boersma, M., 1997. Offspring size and parental fitness in Daphnia magna. Evolutionary Ecology 11: 439–450.CrossRefGoogle Scholar
  10. Boomer, I., D. J. Horne & I. Slipper, 2003. The use of ostracods in paleoenvironmental studies, or what can you do with an ostracod shell? Paleontological Society Papers 9: 153–180.Google Scholar
  11. Brancelj, A., M. Kernan, E. Jeppesen, M. Rautio, M. Manca, M. Šiško, M. Alonso & E. Stuchlíck, 2009. Cladocera remains from the sediments of remote cold lakes: a study of 294 lakes across Europe. Fundamental and Applied Limnology-Advances in Limnology 62: 269–294.Google Scholar
  12. Brodersen, K. P., M. C. Whiteside & C. Lindegaard, 1998. Reconstruction of trophic state in Danish lakes using subfossil chydorid (Cladocera) assemblages. Canadian Journal of Fisheries and Aquatic Sciences 55: 1093–1103.CrossRefGoogle Scholar
  13. Brooks, J. A. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  14. Buck, C. E., J. A. Christen & G. N. Jame, 1999. BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeology, 7 (http://intarch.ac.uk/journal/issue7/buck/).
  15. Buczkó, K., J. Korponai, J. Padisák & S. W. Starratt (eds), 2009a. Paleolimnological proxies as tools of environmental reconstruction in fresh water. Developments in Hydrobiology, Vol 208, Springer.Google Scholar
  16. Buczkó, K., E. K. Magyari, É. Soróczki-Pintér, K. Hubay, M. Braun & M. Bálint, 2009b. Diatom-based evidence for abrupt climate changes during the Late glacial in the South Carpathian Mountains. Central European Geology 52: 249–268.CrossRefGoogle Scholar
  17. Buczkó, K., E. K. Magyari, T. Hübener, M. Braun, M. Bálint, M. Tóth & A. F. Lotter, in press. Diatoms show bipartite division and enhanced seasonality during the Younger Dryas in the Southern Carpathians (Romania). Journal of Paleolimnology.Google Scholar
  18. Camarero, L., M. Rogora, R. Mosello, N. J. Anderson, A. Barbieri, I. Botev, M. Kernan, J. Kopacek, A. Korhola, A. F. Lotter, G. Muri, C. Postolache, E. Stuchlik, H. Thies & R. F. Wright, 2009. Regionalisation of chemical variability in European mountain lakes. Freshwater Biology 54: 2452–2469.CrossRefGoogle Scholar
  19. Catalan, J., M. G. Barbieri, F. Bartumeus, P. Bitušík, I. Botev, A. Brancelj, D. Cogălniceanu, M. Manca, A. Marchetto, N. Ognjanova-Rumenova, S. Pla, M. Rieradevall, S. Sorvari, E. Štefková, E. Stuchlík & M. Ventura, 2009. Ecological thresholds in European alpine lakes. Freshwater Biology 54: 2494–2517.CrossRefGoogle Scholar
  20. Čiamporová-Zaťovičová, Z., L. Hamerlík, F. Šporka & P. Bitušík, 2010. Littoral benthic macroinvertebrates of alpine lakes (Tatra Mts) along an altitudinal gradient: a basis for climate change assessment. Hydrobiologia 648: 19–34.CrossRefGoogle Scholar
  21. Cogălniceanu, D., C. M. Vâlcu, M. Vâlcu, N. Găldean & G. Staicu, 2004. Seasonal variability of temperature in alpine lakes from the Retezat National Park, Romania. Studii şi Cercetări Biologie 9: 152–157.Google Scholar
  22. Daubenmire, R. & D. Prusso, 1963. Studies of the decomposition rates of tree litter. Ecology 44: 589–592.CrossRefGoogle Scholar
  23. Duigan, C. A. & H. H. Birks, 2000. The late-glacial and early-Holocene palaeoecology of cladoceran microfossil assemblages at Kråkenes, western Norway, with quantitative reconstruction of temperature changes. Journal of Paleolimnology 23: 67–76.CrossRefGoogle Scholar
  24. Eggermont, H., D. Verschuren, L. Audenaert, L. Lens, J. Russell, G. Klaassen & O. Heiri., 2010. Limnological and ecological sensitivity of Rwenzori mountain lakes to climate warming. In Eggermont, H., M. Kernan & K. Martens (eds), Global Change Impacts on Mountain Lakes. Special Issue, Hydrobiologia 648: 123–142.Google Scholar
  25. Fărcaş I. & V. Sorocovschi, 1992. The climate of the Retezat Mountains. In Popovici, I. (ed.) The Retezat National Park. Ecological Studies. West Side Computers Brasov: 13–20.Google Scholar
  26. Farcas, S., J. L. de Beaulieu, M. Reille, G. Coldea, B. Diaconeasa, C. Goeury, T. Goslar & T. Jull, 1999. First 14C dating of Late Glacial and Holocene pollen sequences from the Romanian Carpathians. Comptes Rendues de l’Académie des Sciences de Paris, Sciences de la Vie 322: 799–807.Google Scholar
  27. Frey, D. G., 1950. The taxonomic and phylogenetic significance of the head pores of the Chydoridae (Cladocera). Internationale Revue Gesamten Hydrobiologie 44: 27–50.CrossRefGoogle Scholar
  28. Frey, D. G., 1962. Cladocera from the Eemian interglacial of Denmark. Journal of Paleontology 36: 1133–1154.Google Scholar
  29. Frey, D. G., 1986. Cladocera analysis. In Berglund, B. E. (ed.), Handbook of Palaeooecology and Palaeohydrology. Wiley, Chichester: 667–692.Google Scholar
  30. Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. Journal of Paleolimnology 1: 179–191.Google Scholar
  31. Frey, D. G., 1991. First subfossil records of Daphnia headshields and shells (Anomopoda, Daphniidae) about 10 000 years old from northernmost Greenland, plus Alona guttata (Chydoridae). Journal of Paleolimnology 6: 193–197.CrossRefGoogle Scholar
  32. Galbarczyk-Gąsiorowska, L., M. Gąsiorowski & K. Szeroczyńska, 2009 Reconstruction of human influence during the last two centuries on two small oxbow lakes near Warsaw (Poland). In Buczkó, K., J. Korponai, J. Padisák & S. W. Starratt (eds), Palaeolimnological Proxies as Tools of Environmental Reconstruction in Fresh Water. Special Issue, Hydrobiologia 631: 173–183.Google Scholar
  33. Goulden, C. E., 1969. Interpretive studies of cladoceran microfossils in lake sediments. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 17: 43–55.Google Scholar
  34. Goulden, C. E. & D. G. Frey, 1963. The occurrence and significance of lateral head pores in the genus Bosmina (Cladocera). Internationale Revue Gesamten Hydrobiologie 48: 513–522.CrossRefGoogle Scholar
  35. Griffiths, H. I. & J. A. Holmes, 2000. Non-marine Ostracods and Quaternary Palaeoenvironments. Quaternary Research Association, London.Google Scholar
  36. Gulyás, P. & L. Forró, 1999. Az ágacsápú rákok (Cladocera) kishatározója 2. (A guide for the identification of Cladocera 2nd (revised and enlarged) edition—in Hungarian). In Freshwater Nature Conservation and Environmental Protection (in Hungarian: Vízi természet-és környezetvédelem), Vol. 9, 2nd edn. KGI, Budapest.Google Scholar
  37. Hamrová, E., V. Goliáš & A. Petrusek, 2010. Identifying century-old long-spined Daphnia: species replacement in a mountain lake characterised by paleogenetic methods. Hydrobiologia 643: 97–106.CrossRefGoogle Scholar
  38. Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.CrossRefGoogle Scholar
  39. Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology 19: 55–62.CrossRefGoogle Scholar
  40. Hofmann, W., 2000. Response of the chydorid faunas to rapid climatic four alpine lakes at different altitudes. Palaeogeography, Palaeoclimatology, Palaeoecology 159: 281–292.CrossRefGoogle Scholar
  41. Hofmann, W., 2001. Late-Glacial/Holocene succession of the chironomid and cladoceran fauna of the Soppensee (Central Switzerland). Journal of Paleolimnology 25: 411–420.CrossRefGoogle Scholar
  42. Hofmann, W., 2003. The long-term succession of high-altitude cladoceran assemblages: a 9000-year record from Sägistalsee (Swiss Alps). Journal of Paleolimnology 30: 291–296.CrossRefGoogle Scholar
  43. Hořická, Z., E. Stuchlík, I. Hudec, M. Černý & J. Fott, 2006. Acidification and the structure of cladoceran zooplankton in mountain lakes: The Tatra Mountains (Slovakia, Poland). Biologia, Bratislava 61: 121–134.CrossRefGoogle Scholar
  44. Jeppesen, E., J. P. Jensen, S. Amsinck, F. Landkildehus, T. Lauridsen & S. F. Mitchell, 2002. Reconstructing the historical changes in Daphnia mean size and planktivorous fish abundance in lakes from the size of Daphnia ephippia in the sediment. Journal of Paleolimnology 27: 133–143.CrossRefGoogle Scholar
  45. Jeppesen, E., J. P. Jensen, T. L. Lauridsen, S. L. Amsinck, K. Christoffersen, M. Søndergaard & S. F. Mitchell, 2003. Sub-fossils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. In E. van Donk, M. Boersma & P. Spaak (eds), Recent Developments in Fundamental and Applied Plankton Research. Hydrobiologia 491: 321–330.Google Scholar
  46. Juggins, S., 2009. rioja: Analysis of Quaternary Science Data, R package version 0.5-6. http://cran.r-project.org/package=rioja.
  47. Kernan, M., M. Ventura, P. Bitušík, A. Brancelj, G. Clarke, G. Velle, G. G. Raddum, E. Stuchlík & J. Catalan, 2009. Regionalisation of remote European mountain lake ecosystems according to their biota: environmental versus geographical patterns. Freshwater Biology 54: 2470–2493.CrossRefGoogle Scholar
  48. Korhola, A. & M. Rautio, 2001. Cladocera and other Branchiopod Crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 4. Zoological Indicators. Kluwer, Dordrecht, The Netherland: 5–41.Google Scholar
  49. Korhola, A., M. Tikkanen & J. Weckström, 2005. Quantification of Holocene lake-level changes in Finnish Lapland using a Cladocera—lake depth transfer model. Journal of Paleolimnology 34: 175–190.CrossRefGoogle Scholar
  50. Korsman, T., I. Renberg & J. N. Anderson, 1994. A palaeolimnological test of the influence of Norway spruce (Picea abies) immigration on lake-water acidity. Holocene 4: 132–140.CrossRefGoogle Scholar
  51. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18: 395–420.CrossRefGoogle Scholar
  52. Lotter, A. F., P. G. Appleby, R. Bindler, J. A. Dearing, J.-A. Grytnes, W. Hofmann, C. Kamenik, A. Lami, D. M. Livingstone, C. Ohlendorf, N. Rose & M. Sturm, 2002. The sediment record of the past 200 years in a Swiss high-alpine lake: Hagelseewli (2339 m a.s.l.). Journal of Paleolimnology 28: 111–127.CrossRefGoogle Scholar
  53. Luoto, T. P. & L. Nevalainen, 2009. Larval chaoborid mandibles in surface sediment of small shallow lakes in Finland: implication for paleolimnology. Hydrobiologia 631: 185–195.CrossRefGoogle Scholar
  54. Magyari, E. K., M. Braun, K. Buczkó, Z. Kern, P. László, K. Hubay & M. Bálint, 2009. Radiocarbon chronology of glacial lake sediments in the Retezat Mts (S Carpathians, Romania): a window to Lateglacial and Holocene climatic and palaeoenvironmental changes. Central European Geology 52: 225–248.CrossRefGoogle Scholar
  55. Magyari, E. K., A. Major, M. Bálint, J. Nédli, M. Braun, L. Parducci & I. Rácz, 2011. Population dynamics and genetic changes of Picea abies in the South Carpathians revealed by pollen and ancient DNA analyses. BMC Evolutionary Biology 11: 66.PubMedCrossRefGoogle Scholar
  56. Manca, M. & M. Armiraglio, 2002. Zooplankton of 15 lakes in the Southern Central Alps: comparison of recent and past (pre-ca 1850 AD) communities. Journal of Limnology 61: 225–231.Google Scholar
  57. Manca, M. & P. Comoli, 1999. Studies on zooplankton of Lago Paione Superiore. Journal of Limnology 59: 131–135.Google Scholar
  58. Marchetto, A. & M. Rogora, 2004. Measured and modelled trends in European mountain lakes: results of 15 years of co-operative studies. Journal of Limnology 63: 55–62.Google Scholar
  59. Meisch, C., 2000. Freshwater Ostracoda from Western and Central Europe. Süβwasserfauna von Mitteleuropa 8/3. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  60. Naidenow, W., 1975. Biologische Eingenheiten der glazialen Hydrofauna aus den Gebirgen Rila und Pirin (Bulgarien). Symposia Biologica Hungarica 15: 281–284.Google Scholar
  61. Nowiński, K. & B. Wiśniewska-Wojtasik, 2006. Diversity of abiotic properties of water in shallow lakes in Hornsund area (SW Spitsbergen). Limnological Review 6: 215–222.Google Scholar
  62. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2010. vegan: Community Ecology Package. R package version 1.17-4. http://CRAN.R-project.org/package=vegan.
  63. Perrin, N., 1988. Why are offspring born larger when it is colder? Phenotypic plasticity for offspring size in the cladoceran Simocephalus vetulus (Müller). Functional Ecology 2: 283–288.CrossRefGoogle Scholar
  64. Péterfi, L. St., 1974. Preliminary notes on the subfossil and recent diatom flora of the Zanoguta peatbog from the Retezat Mountains. Studia Universitatis Babes-Bolyai, Cluj, Series Biologia 19: 5–17.Google Scholar
  65. R Development Core Team, 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.
  66. Rasmussen, S. O., K. K. Andersen, A. M. Svensson, J. P. Steffensen, B. M. Vinther, H. B. Clausen, M.-L. Siggaard-Andersen, S. J. Johnsen, L. B. Larsen, D. Dahl-Jensen, M. Bigler, R. Röthlisberger, H. Fischer, K. Goto-Azuma, M. E. Hansson & U. Ruth, 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111: D06102.CrossRefGoogle Scholar
  67. Reimer, P. J., M. G. L. Baillie, E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell, C. Bronk Ramsey, C. E. Buck, G. S. Burr, R. L. Edwards, M. Friedrich, P. M. Grootes, T. P. Guilderson, I. Hajdas, T. J. Heaton, A. G. Hogg, K. A. Hughen, K. F. Kaiser, B. Kromer, F. G. McCormac, S. W. Manning, R. W. Reimer, D. A. Richards, J. R. Southon, S. Talamo, C. S. M. Turney, J. van der Plicht & C. E. Weyhenmeyer, 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51: 1111–1150.Google Scholar
  68. Reuther, A. U., P. Urdea, C. Geiger, S. Ivy-Ochs, H. P. Niller, P. W. Kubik & K. Heine, 2007. Late Pleistocene glacial chronology of the Pietrele Valley, Retezat Mountains, Southern Carpathians constrained by 10Be exposure ages and pedological investigations. Quaternary International 164–165: 151–169.CrossRefGoogle Scholar
  69. Sacherová, V., R. Kršková, E. Stuchlík, Z. Hořická, I. Hudec & J. Fott, 2006. Long-term change of the littoral Cladocera in the Tatra Mountain lakes through a major acidification event. Biologia, Bratislava 61: 109–119.CrossRefGoogle Scholar
  70. Samchyshyna, L., L.-A. Hansson & K. Christoffersen, 2008. Patterns in the distribution of Arctic freshwater zooplankton related to glaciation history. Polar Biology 31: 1427–1435.CrossRefGoogle Scholar
  71. Sarmaja-Korjonen, K., 2001. Correlation of fluctuations in cladoceran planktonic:littoral ratio between three cores from a small lake in southern Finland: Holocene water level changes. Holocene 11: 53–63.CrossRefGoogle Scholar
  72. Sarmaja-Korjonen, K. & P. Alhonen, 1999. Cladoceran and diatom evidence of lake-level fluctuations from a Finnish lake and the effect of aquatic-moss layers on microfossil assemblages. Journal of Paleolimnology 22: 277–290.CrossRefGoogle Scholar
  73. Sarmaja-Korjonen, K., A. Seppanen & O. Bennike, 2006. Pediastrum algae from the classic late glacial Bolling So site, Denmark: response of aquatic biota to climate change. Review of Palaeobotany and Palynology 138: 95–107.CrossRefGoogle Scholar
  74. Sebestyén, O., 1965. Kladocera tanulmányok a Balatonon III. Tótörténeti elotanulmányok I˝—Cladocera studies in Lake Balaton III. Preliminary studies for lake history investigations. Annales Instituti Biologici (Tihany) Hungaricae Academie Scientarium 32: 187–228.Google Scholar
  75. Sebestyén, O., 1969. Kladocera tanulmányok a Balatonon IV. Negyedkori maradványok a Balaton üledékében I—Cladocera studies in Lake Balaton IV. Quaternary remains in the sediment of Lake Balaton I. Annales Instituti Biologici (Tihany) Hungaricae Academie Scientarium 36: 229–256.Google Scholar
  76. Sebestyén, O., 1970. Kladocera tanulmányok a Balatonon IV. Negyedkori maradványok a Balaton üledékében II—Cladocera studies in Lake Balaton IV. Quaternary remains in the sediment of Lake Balaton II. Annales Instituti Biologici (Tihany) Hungaricae Academie Scientarium 37: 247–279.Google Scholar
  77. Sebestyén, O., 1971. Kladocera tanulmányok a Balatonon IV. Negyedkori maradványok a Balaton üledékében III—Cladocera studies in Lake Balaton IV. Quaternary remains in the sediment of Lake Balaton III. Annales Instituti Biologici (Tihany) Hungaricae Academie Scientarium 38: 227–268.Google Scholar
  78. Shakun, J. D. & A. E. Carlson, 2010. A global perspective on last glacial maximum to Holocene climate change. Quaternary Science Reviews 29: 1801–1816.CrossRefGoogle Scholar
  79. Stefanova, I., N. Ognjanova-Rumenova, W. Hofmann & B. Ammann, 2003. Late Glacial and Holocene environmental history of the Pirin Mountains (SW Bulgaria): a paleolimnological study of Lake Dalgoto (2310 m). Journal of Paleolimnology 30: 95–111.CrossRefGoogle Scholar
  80. Straškrábová, V., D. Cogălniceanu, J. Nedoma, L. Parpală, C. Postolache, C. Tudorancea, A. Vădineau, C.-M. Vălcu & V. Zinevici, 2006. Bacteria and pelagic food webs in pristine alpine lakes (Retezat Mountains, Romania). Transylvanian Review of Systematical and Ecological Research 3: 1–10.Google Scholar
  81. Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of Subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie, Poland.Google Scholar
  82. Tóth, M., E. K. Magyari, D. S. J. Brooks, M. Braun, K. Buczkó, M. Bálint & O. Heiri, 2011. A chironomid-based reconstruction of late glacial summer temperatures in the Southern Carpathians (Romania). Quaternary Research. doi:10.1016/j.yqres.2011.09.005.
  83. Weckström, K., J. Weckström, L.-M. Yliniemi & A. Korhola, 2009. The ecology of Pediastrum (Chlorophyceae) in subarctic lakes and their potential as paleobioindicators. Journal of Paleolimnology 43: 61–73.CrossRefGoogle Scholar
  84. Whiteside, M. C., J. B. Williams & C. P. White, 1978. Seasonal abundance and pattern of chydorid, Caldocera in mud and vegetative habitats. Ecology 59: 1177–1188.CrossRefGoogle Scholar
  85. Williamson, C. E., O. G. Olson, S. E. Lott, N. D. Walker, D. R. Engström & B. R. Hargreaves, 2001. Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology 82: 1748–1760.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • János Korponai
    • 1
    • 2
  • Enikő Katalin Magyari
    • 3
  • Krisztina Buczkó
    • 4
  • Sanda Iepure
    • 5
    • 6
  • Tadeusz Namiotko
    • 7
  • Dániel Czakó
    • 8
  • Csilla Kövér
    • 2
  • Mihály Braun
    • 9
  1. 1.West-Transdanubian District Water AuthorityKeszthelyHungary
  2. 2.Department of Chemistry and Environmental SciencesUniversity of West HungarySzombathelyHungary
  3. 3.HAS-NHMUS Research Group for PaleontologyBudapestHungary
  4. 4.Department of BotanyHungarian Natural History MuseumBudapestHungary
  5. 5.Department of MineralogyBabes-Bolyai UniversityClujRomania
  6. 6.Speleological Institute “Emil Racovitza”, Deptartment of Cluj (Biospeleology)Cluj NapocaRomania
  7. 7.Department of Genetics, Laboratory of LimnozoologyUniversity of GdanskGdanskPoland
  8. 8.School of Earth Sciences and GeographyKingston UniversityKingston-upon-Thames, SurreyUK
  9. 9.Department of Inorganic and Analytical ChemistryUniversity of DebrecenDebrecenHungary

Personalised recommendations