Advertisement

Hydrobiologia

, Volume 685, Issue 1, pp 97–107 | Cite as

Fish assemblage dynamics in a Neotropical floodplain relative to aquatic macrophytes and the homogenizing effect of a flood pulse

  • L. C. GomesEmail author
  • C. K. Bulla
  • A. A. Agostinho
  • L. P. Vasconcelos
  • L. E. Miranda
HABITAT COMPLEXITY

Abstract

The presence of aquatic macrophytes is a key factor in the selection of habitats by fish in floodplain lakes because these plants enhance the physical and biological complexities of aquatic habitats. The seasonal flood pulse may influence this interaction, but there is no information in the literature about the effects that flood events may have on macrophytes assemblages and its associated effects on fish assemblages. Thus, this article aimed to investigate whether species richness, evenness and similarities in fish assemblage composition differed between littoral areas vegetated with macrophytes and unvegetated areas, before and after a flood. We sampled three lakes in the floodplain of the upper Paraná River basin. Sampling was conducted before (December 2004 and January 2005) and after (early March, late March and May 2005) a flood event. Overall, species richness and evenness were higher in macrophytes-covered areas. Before the flood, the composition of fish assemblages was distinct when comparing vegetated and unvegetated areas. After the flood, the similarity in fish assemblage composition was higher, indicating a homogenization effect of floods for fish inhabiting littoral areas of floodplain lakes. After the flood, opportunistic species dominated the fish assemblages in aquatic macrophytes, apparently restructuring assemblages in the littoral, restarting a succession process. Thus, the observed homogenization effect of the flood could minimize biological interactions and could induce fish assemblages to begin a new process of structurization.

Keywords

Floodplain lakes Fish assemblage Littoral areas Aquatic macrophytes 

Notes

Acknowledgments

We sincerely thank João Dirço Latini, Sebastião Rodrigues and other technicians that helped during samplings. The “Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura” (Nupélia) provided the infrastructure. This research was conducted under the “Programa Ecológico de Longa Duração” (PELD), Site 6. LCG and AAA are grateful for the Bolsa de Produtividade em Pesquisa granted by CNPq, whereas CKB and LPV are grateful to CNPq and CAPES (respectively) for the fellowships. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Supplementary material

10750_2011_870_MOESM1_ESM.doc (286 kb)
Supplementary material 1 (DOC 287 kb)

References

  1. Agostinho, A. A., S. M. Thomaz, C. V. Minte-Vera & K. O. Winemiller, 2000. Biodiversity in the Paraná River floodplain. In Gopal, B., W. J. Junk & J. A. Davis (eds), Biodiverstity in wetlands: assessment, function and conservation, Vol. 1. Backhuys Publishers, Leiden: 89–118.Google Scholar
  2. Agostinho, A. A., L. C. Gomes & H. F. Julio Jr., 2003. Relações entre macrófitas e fauna de peixes. In Thomaz, S. M. & L. M. Bini (eds), Ecologia e manejo de macrófitas aquáticas. EDUEM, Maringá: 261–279.Google Scholar
  3. Agostinho, A. A., L. C. Gomes, S. Veríssimo & E. K. Okada, 2004. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14: 11–19.CrossRefGoogle Scholar
  4. Agostinho, A. A., S. M. Thomaz, L. C. Gomes & S. L. S. M. A. Baltar, 2007. Influence of Eichhornia azurea on Fish Assemblage of the Upper Paraná River Floodplain (Brazil). Aquatic Ecosystem Health & Management 10(2): 174–186.CrossRefGoogle Scholar
  5. Agostinho, A. A., C. C. Bonecker & L. C. Gomes, 2009. Effects of water quantity on connectivity: the case of the upper Paraná River floodplain. Ecohydrology & Hydrobiology 9(1): 99–113.CrossRefGoogle Scholar
  6. Anderson, M. J., 2008. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, New Zealand.Google Scholar
  7. Araújo-Lima, C. A. R. M., L. P. S. Portugal & E. G. Ferreira, 1986. Fish-macrophyte relationship in the Anavilhanas archipelago, a black water system in the Central Amazon. Journal of Fish Biology 29: 1–11.CrossRefGoogle Scholar
  8. Benson, B. J. & J. J. Magnuson, 1992. Spatial heterogeneity of littoral fish assemblages in lakes: relation to species diversity and habitat structure. Canadian Journal of Fisheries and Aquatic Sciences 49: 1493–1500.CrossRefGoogle Scholar
  9. Bonetto, A. A., E. Cordiviiola de Yuan, C. Pignalberi & C. Oliveros, 1969. Ciclos hidrologicos del Rio Paraná y las poblaciones de peces contenidas en las cuencas temporarias de su valle de inundacion. Physis 29(78): 213–223.Google Scholar
  10. Bulla, C. K., L. C. Gomes, L. E. Miranda & A. A. Agostinho, 2011. Drifting macrophyte mats disperse fish in the Ivinhema River, Brazil. Neotropical Ichthyology 9: 403–409.CrossRefGoogle Scholar
  11. Casatti, L., H. F. Mendes & K. M. Ferreira, 2003. Aquatic macrophytes as feeding site for small fishes in the Rosana reservoir, Paranapanema river, southeastern Brazil. Brazilian Journal of Biology 63(2): 213–222.CrossRefGoogle Scholar
  12. Chick, J. H. & C. C. McIvor, 1994. Patterns in the abundance and composition of fishes among beds of different macrophytes: viewing a littoral zone as a landscape. Canadian Journal of Fisheries and Aquatic Sciences 51: 2873–2882.CrossRefGoogle Scholar
  13. Chick, J. H. & C. C. McIvor, 1997. Habitat selection by three littoral zone fishes: effects of predation pressure, plant density and macrophyte type. Ecology of Freshwater Fish 6: 27–35.CrossRefGoogle Scholar
  14. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth.Google Scholar
  15. Crampton, W. G. R. & C. D. Hopkins, 2005. Nesting and paternal care in the weakly electric fish Gymnotus (Gymnotiformes: Gymnotidae) with descriptions of larval and adult electric organ discharges of two species. Copeia 1: 48–60.CrossRefGoogle Scholar
  16. Delariva, R. L., A. A. Agostinho, K. Nakatani & G. Baumgartner, 1994. Ichthyofauna associated to aquatic macrophytes in the upper Parana river floodplain. Revista Unimar 16(3): 41–60.Google Scholar
  17. Dibble, E. D. & S. M. Thomaz, 2009. Use of fractal dimension to assess habitat complexity and its influence on dominant invertebrates inhabiting tropical and temperate macrophytes. Journal of Freshwater Ecology 24: 93–102.CrossRefGoogle Scholar
  18. Dibble, E. D., K. J. Killgore & S. L. Harrel, 1996. Assesment of fish-plant interactions. In Miranda, L. E. & D. R. Devries (eds), Multidimensional approaches to reservoir fisheries management. American Fisheries Society Symposium, Bethesda, Maryland, Vol. 16: 357–372.Google Scholar
  19. Graça, W. J. & C. S. Pavanelli, 2007. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes. EDUEM, Maringá: 241 pp.Google Scholar
  20. Grenouillet, G. & D. Pont, 2001. Juvenile fishes in macrophyte beds: influence of food resources, habitat structure and body size. Journal of Fish Biology 59: 939–959.CrossRefGoogle Scholar
  21. Grenouillet, G., D. Pont & J. M. Olivier, 2000. Habitat occupancy patterns of juvenile fishes in a large lowland river: interactions with macrophytes. Archiv fur Hydrobiologie, Stuttgart 149(2): 307–326.Google Scholar
  22. Henderson, P. A. & H. F. Hamilton, 1995. Standing crop and distribution of fish in drifting and attached floating meadow within an Upper Amazonian varzea lake. Journal of Fish Biology 47: 266–276.CrossRefGoogle Scholar
  23. Junk, W., 1973. Investigations on the ecology and production biology of the floating meadows (Paspalum-Echinochloa) on the middle Amazon. Parte II: The aquatic fauna in the root zone of the floating vegetation. Amazoniana 4: 9–102.Google Scholar
  24. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Science 106: 110–127.Google Scholar
  25. Lowe-McConnell, R. H., 1999. Estudos ecológicos de comunidades de peixes tropicais. EDUSP, São Paulo: 534 pp. Tradução: Vazzoler, A. E. A. de M., A. A. Agostinho &. P. T. M. Cunningham. EDUSP, São Paulo, 534 p., il. (Coleção Base). Título original: Ecological Studies in Tropical Fish Communities. University Press, Cambridge.Google Scholar
  26. Matthews, W. J., 1998. Patterns in freshwater fish ecology. Chapman and Hall, New York: 757 pp.Google Scholar
  27. McCune, B. & M. J. Mefford, 1999. PC-ORD for Windows: Multivariate Analysis of Ecological Data. Version 4.01. MjM Software Design, Gleneden Beach, OR.Google Scholar
  28. Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a subtropical sallow lake. Aquatic Ecology 37: 377–391.CrossRefGoogle Scholar
  29. Meschiatti, J., M. S. Arcifa & N. Fenerich-Verani, 2000. Fish communities associated with macrophytes in Brazilian floodplain lakes. Environmental Biology of Fishes 58: 133–143.CrossRefGoogle Scholar
  30. Mouquet, N., P. Munguia, J. M. Kneitel & T. E. Miller, 2003. Community assembly time and relationship between local and regional species richness. Oikos 103: 618–626.CrossRefGoogle Scholar
  31. Nakatani, K., A. A. Agostinho, G. Baumgartner, A. Bialetzki, P. V. Sanches, M. C. Makrakis & C. S. Pavanelli, 2001. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. EDUEM, Maringá: 378 pp.Google Scholar
  32. Okada, E. K., A. A. Agostinho, M. Petrere Jr. & T. Penczak, 2003. Factors affecting fish diversity and abundance in drying ponds and lagoons in the upper Paraná River basin, Brazil. Ecohydrology & Hidrobiology 3: 97–110.Google Scholar
  33. Padial, A. A., S. M. Thomaz & A. A. Agostinho, 2009a. Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia 624: 161–170.CrossRefGoogle Scholar
  34. Padial, A. A., P. Carvalho, S. M. Thomaz, S. M. Boschilia, R. B. Rodrigues & J. T. Kobayashi, 2009b. The role of an extreme flood disturbance on macrophyte assemblages in a Neotropical floodplain. Aquatic Science 71: 389–398.CrossRefGoogle Scholar
  35. Pelicice, F. M., A. A. Agostinho & S. M. Thomaz, 2005. Fish assemblages associated with Egeria in a tropical reservoir: investigating the effects of plant biomass and diel period. Acta Oecologica 27: 9–16.CrossRefGoogle Scholar
  36. Petr, T., 2000. Interactions between fish and aquatic macrophytes in inland waters: a review. FAO Fisheries Technical Paper 396: 185 pp.Google Scholar
  37. Petry, P., P. B. Bayley & D. F. Markle, 2003. Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River Floodplain. Journal of Fish Biology 63: 547–579.CrossRefGoogle Scholar
  38. Roberto, M. C., N. F. Santana & S. M. Thomaz, 2009. Limnology in the upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology 69(2 Suppl): 717–725.CrossRefGoogle Scholar
  39. Rossi, L. M. & M. J. Parma de Croux, 1992. Influencia de la vegetación acuática en la distribución de peces del río Paraná, Argentina. Ambiente Subtropical 2: 65–753.Google Scholar
  40. Rozas, L. P. & W. E. Odum, 1988. Occupation of submerged aquatic vegetation by fishes: testing the roles of food and refuge. Oecologia 77: 101–106.CrossRefGoogle Scholar
  41. Sánchez-Botero, J. I. & C. A. R. M. Araújo-Lima, 2001. As macrófitas aquáticas como berçário para a ictiofauna da várzea do rio Amazonas. Acta Amazônica 31(3): 437–447.Google Scholar
  42. Savino, J. F. & R. A. Stein, 1989. Behavior of fish predators and their prey: habitat choice between open water and dense vegetation. Environmental Biology of Fishes 24(4): 287–293.CrossRefGoogle Scholar
  43. Sazima, I. & C. Zamprogno, 1985. Use of water hyacinths as shelter, foraging place, and transport by young piranhas, Serrasalmus spilopleura. Environmental Biology of Fishes 12(3): 237–240.CrossRefGoogle Scholar
  44. Souza-Filho, E. E., 2009. Evaluation of the Upper Paraná River discharge controlled by reservoirs. Brazilian Journal of Biology 69(2 suppl): 707–716.CrossRefGoogle Scholar
  45. Súarez, Y. R., M. Petrere Jr & A. C. Catella, 2001. Factors determining the structure of fish communities in Pantanal lagoons (MS, Brazil). Fisheries Management and Ecology 8: 173–186.CrossRefGoogle Scholar
  46. Súarez, Y. R., M. Petrere & A. C. Catella, 2004. Factors regulating diversity and abundance of fish communities in Pantanal lagoons (MS, Brazil). Fisheries Management and Ecology 11: 45–50.CrossRefGoogle Scholar
  47. Thomaz, S. M. & L. M. Bini, 2003. Ecologia e manejo de macrófitas aquáticas. EDUEM, Maringá: 341 pp.Google Scholar
  48. Thomaz, S. M., L. M. Bini, T. A. Pagioro, K. J. Murphy, A. M. Santos & D. C. Souza, 2004. Aquatic macrophytes: diversity, biomass and decomposition. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (eds), The Upper Paraná River and its Floodplain: Physical Aspects, Ecology and Conservation. Backhuys Publishers, Leiden: 75–102.Google Scholar
  49. Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.CrossRefGoogle Scholar
  50. Thomaz, S. M., P. Carvalho, A. A. Padial & J. T. Kobayashi, 2009. Temporal and spatial patterns of aquatic macrophyte diversity in the Upper Paraná River floodplain. Brazilian Journal of Biology 69(2): 617–625.CrossRefGoogle Scholar
  51. Warfe, D. M. & L. A. Barmuta, 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171–178.PubMedCrossRefGoogle Scholar
  52. Weaver, M. J., J. J. Magnuson & M. K. Clayton, 1997. Distribution of littoral fishes in structurally complex macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 54: 2277–2289.Google Scholar
  53. Winemiller, K. O., 2005. Life history strategies, population regulation, and implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 62: 872–885.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • L. C. Gomes
    • 1
    Email author
  • C. K. Bulla
    • 2
  • A. A. Agostinho
    • 1
  • L. P. Vasconcelos
    • 2
  • L. E. Miranda
    • 3
  1. 1.Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Departamento de Biologia, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia)Universidade Estadual de Maringá, Bolsista Produtividade em Pesquisa do CNPqMaringáBrazil
  2. 2.Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Departamento de BiologiaUniversidade Estadual de MaringáMaringáBrazil
  3. 3.U.S. Geological SurveyMississippi Cooperative Fish and Wildlife Research UnitMississippi StateUSA

Personalised recommendations