, Volume 692, Issue 1, pp 99–109 | Cite as

Biomass and nutrient stock of submersed and floating macrophytes in shallow lakes formed by rewetting of degraded fens

  • P. Steffenhagen
  • D. ZakEmail author
  • K. Schulz
  • T. Timmermann
  • S. Zerbe


Ecosystem restoration by rewetting of degraded fens led to the new formation of large-scale shallow lakes in the catchment of the River Peene in NE Germany. We analyzed the biomass and the nutrient stock of the submersed (Ceratophyllum demersum) and the floating macrophytes (Lemna minor and Spirodela polyrhiza) in order to assess their influence on temporal nutrient storage in water bodies compared to other freshwater systems. Ceratophyllum demersum displayed a significantly higher biomass production (0.86–1.19 t DM = dry matter ha−1) than the Lemnaceae (0.64–0.71 t DM ha−1). The nutrient stock of submersed macrophytes ranged between 28–44 kg N ha−1 and 8–12 kg P ha−1 and that of floating macrophytes between 14–19 kg N ha−1 and 4–5 kg P ha−1 which is in the range of waste water treatment plants. We found the N and P stock in the biomass of aquatic macrophytes being 20–900 times and up to eight times higher compared to the nutrient amount of the open water body in the shallow lakes of rewetted fens (average depth: 0.5 m). Thereafter, submersed and floating macrophytes accumulate substantial amounts of dissolved nutrients released from highly decomposed surface peat layers, moderating the nutrient load of the shallow lakes during the growing season from April to October. In addition, the risk of nutrient loss to adjacent surface waters becomes reduced during this period. The removal of submersed macrophytes in rewetted fens to accelerate the restoration of the low nutrient status is discussed.


Plant biomass Ceratophyllum demersum Fen restoration Lemna minor Nutrient retention Nitrogen Phosphorus Peat soils 



This study was supported by the Landesamt für Umwelt, Naturschutz und Geologie (LUNG) of the German federal state of Mecklenburg-Vorpommern. We offer our thanks to Teresa Kewitsch, Antje Lüder, and Rene Dommain for supporting the field and laboratory work. Curtis Björk and Tom Shatwell are acknowledged for linguistic improvements and two anonymous reviewers for the helpful comments to a previous version of the manuscript.


  1. Best, E. P. H., 1977. Seasonal changes in mineral and organic components of Ceratophyllum demersum and Elodea canadensis. Aquatic Botany 3: 337–348.CrossRefGoogle Scholar
  2. Best, E. P. H., J. H. A. Dassen, J. J. Boon & G. Wiegers, 1990. Studies on decomposition of Ceratophyllum demersum litter under laboratory and field conditions: losses of dry mass and nutrients, qualitative changes in organic compounds and consequences for ambient water and sediments. Hydrobiologia 194: 91–114.CrossRefGoogle Scholar
  3. Carpenter, S. R. & M. S. Adams, 1977. The macrophyte tissue nutrient pool of hardwater eutrophic lakes: implication for macrophyte harvesting. Aquatic Botany 3: 239–255.CrossRefGoogle Scholar
  4. Cheng, J., L. Landesman, B. A. Bergmann, J. J. Classen, J. W. Howard & Y. T. Yamamoto, 2002. Nutrient removal from Swine lagoon liquid by Lemna minor 8627. American Society of Agriculture Engineers 45: 1003–1010.Google Scholar
  5. Culley, D. D. & E. A. Epps, 1973. Use of duckweed for waste treatment and animal feed. Journal of Water Pollution Control Federation 45: 337–347.Google Scholar
  6. Day, R.-W. & G. P. Quinn, 1989. Comparison of treatments after an analysis of variance in ecology. Ecological Monographs 59: 433–463.CrossRefGoogle Scholar
  7. Dierberg, F. E., T. A. DeBusk, S. D. Jackson, M. J. Chimney & K. Pietro, 2002. Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading. Water Research 36: 1409–1422.PubMedCrossRefGoogle Scholar
  8. El-Shafai, S. A., F. A. El-Gohary, F. A. Nari, N. P. Van der Steen & H. J. Gijzen, 2007. Nutrient recovery from domestic wastewater using UASB-duckweed ponds system. Bioresource Technology 98: 798–807.PubMedCrossRefGoogle Scholar
  9. Fischer, U., 2004. Entwicklung der Kulturlandschaft im Peene-Talmoor seit 1700—Historische landschaftsökologische Untersuchung eines norddeutschen Flusstalmoores unter besonderer Berücksichtigung des frühneuzeitlichen Zustandes. PhD thesis, Ernst-Moritz-Arndt-University, Greifswald, Germany.Google Scholar
  10. Gerloff, G. C. & P. H. Krombholz, 1966. Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnology and Oceanography 11: 529–537.CrossRefGoogle Scholar
  11. Greenway, M. & A. Woolley, 2001. Changes in plant biomass and nutrient removal over 3 years in a constructed wetland in Cairns, Australia. Water Science and Technology 44: 303–310.PubMedGoogle Scholar
  12. Gumbricht, T., 1993. Nutrient removal processes in freshwater submersed macrophytes systems. Ecological Engineering 2: 1–30.CrossRefGoogle Scholar
  13. Horppila, J. & L. Nurminen, 2005. Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake. Hydrobiologia 545: 167–175.CrossRefGoogle Scholar
  14. Jansen, F., S. Zerbe & M. Succow, 2009. Changes in landscape naturalness derived from a historical land register—a case study from NE Germany. Landscape Ecology 24: 185–198.CrossRefGoogle Scholar
  15. Joosten, H. & D. Clarke, 2002. Wise Use of Mires and Peatland—Background and Principles Including a Framework for Decision-making. International Mire Conservation Group and International Peat Society, Totnes, UK.Google Scholar
  16. Kieckbusch, J. J. & J. Schrautzer, 2007. Nitrogen and phosphorus dynamics of a re-wetted shallow-flooded peatland. Science of the Total Environment 380: 3–12.PubMedCrossRefGoogle Scholar
  17. Körner, S., 1996. Selbstreinigungsprozesse im Klärwerksableiter Wuhle unter besonderer Berücksichtigung der submersen Makrophyten. Ph.D. thesis, Humboldt-University, Berlin, Germany.Google Scholar
  18. Koska, I., 2001. Ökohydrologische Kennzeichnung von Moorstandorten. In Succow, M. & H. Joosten (eds), Landschaftsökologische Moorkunde. Schweizerbart, Stuttgart, Germany: 92–111.Google Scholar
  19. Koska, I. & T. Timmermann, 2004. Parvo-Caricetea den Held & Westerhoff in Westhoff & den Held 1969 nom. cons. propos.—Riede und Röhrichte mäßig nährstoffarmer Niedermoore und Ufer. In Berg, C., J. Dengler, A. Abdank & M. Isermann (eds), Die Pflanzengesellschaften Mecklenburg-Vorpommerns und ihre Gefährdung. Weißdorn-Verlag, Jena, Germany: 163–195.Google Scholar
  20. Kowatsch, A., 2007. Moorschutzkonzepte und-programme in Deutschland. Ein historischer und aktueller Überblick. Naturschutz und Landschaftsplanung 39: 197–204.Google Scholar
  21. Kvĕt, J. & Š. Husák, 1978. Primary data on biomass and production estimates in typical stands of fishpond littoral plant communities. In Dykyjová, D. & J. Kvĕt (eds), Pond Littoral Ecosystems—Structure and Functioning. Springer, Berlin, Germany: 211–216.Google Scholar
  22. Lavoie, C., C. Zimmerman & S. Pellerin, 2001. Peatland restoration: a paleoecological perspective. Ecoscience 8: 247–258.Google Scholar
  23. Leinweber, P. & A. Schlichting, 2003. Auswirkungen der Wiedervernässung von Niedermooren auf Umsetzung und Mobilisierung von Phosphor-Verbindungen. Schriftenreihe des Landesamtes für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern 2: 67–81.Google Scholar
  24. Lenschow, U., 2003. Moore und Moorschutz in Mecklenburg-Vorpommern. Statistische Monatshefte des Statistischen Landesamtes Mecklenburg-Vorpommern 1(2): 7–10.Google Scholar
  25. Lombardo, P. & D. G. Cooke, 2003. Ceratophyllum demersum—phosphorus interactions in nutrient enriched aquaria. Hydrobiologia 497: 79–90.CrossRefGoogle Scholar
  26. Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.CrossRefGoogle Scholar
  27. Mbagwu, I. G. & H. A. Adenji, 1988. The nutritional content of duckweed (Lemna paucicostata Hegelm.) in the Kainji Lake area, Nigeria. Aquatic Botany 29: 357–366.CrossRefGoogle Scholar
  28. Mitsch, J. W. & J. G. Gosselink, 1993. Wetlands, 2nd ed. Van Nostrand Reinhold, New York.Google Scholar
  29. Murphy, J. & J. P. Riley, 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  30. Nikolić, L., K. Čobanović & D. Lazić, 2007. Nymphoides peltata, Myriophyllum spicatum and Ceratophyllum demersum biomass dynamics in Lake Provala. Central European Journal of Biology 2: 156–168.CrossRefGoogle Scholar
  31. Oron, G., A. Devegt & D. Porath, 1988. Nitrogen removal and conversion by duckweed grown on wastewater. Water Research 22: 179–184.CrossRefGoogle Scholar
  32. Ozimek, T., 1996. Usefulness of Lemna minor in wastewater treatment in temperate climates—myth or fact? Environmental Research Forum 5–6: 297–302.Google Scholar
  33. Pedersen, M. L., J. M. Andersen, K. Nielsen & M. Linnemann, 2007. Restoration of Skjern River and its valley: project description and general ecological changes in the project area. Ecological Engineering 30: 131–144.CrossRefGoogle Scholar
  34. Pietro, K. C., M. J. Chimney & A. D. Steinmann, 2006. Phosphorus removal by the Ceratophyllum/periphyton complex in a south Florida (USA) freshwater marsh. Ecological Engineering 27: 290–300.CrossRefGoogle Scholar
  35. Pokorný, J., J. Květ, M. Eiseltová, E. Rejmánková, & D. Dykyjová, 2002. Role of macrophytes and filamentous algae in fishponds. In Květ, J., J. Jeník & L. Soukupová (eds), Freshwater Wetlands and their Sustainable Future. Man and the Biosphere Series, Vol. 28. UNESCO, Paris and The Parthenon Publishing Group, Boca Raton, London, New York, Washington, DC: 97–124.Google Scholar
  36. Reddy, K. R. & T. A. DeBusk, 1987a. Nutrient storage capabilities of aquatic and wetland plants. In Reddy, K. R. & W. H. Smith (eds), Aquatic Plants for Water Treatment and Resource Recovery. Magnolia Publishing, Orlando, FL: 337–357.Google Scholar
  37. Reddy, K. R. & T. A. DeBusk, 1987b. State of the art utilization of aquatic plants in water pollution control. Water Science and Technology 19: 61–79.Google Scholar
  38. Rejmánková, E., 1978. Growth, production and nutrient uptake of duckweed in fishponds and in experimental cultures. In Dykyjová, D. & J. Květ (eds), Pond Littoral Ecosystems. Structure and Functioning. Ecological Studies, Vol. 28. Springer, Berlin, Germany: 278–284.Google Scholar
  39. Rejmánková, E., 1982. The role of duckweeds (Lemnaceae) in small wetland water bodies of Czechoslovakia. In Gopal, B., R. E. Turner, R. G. Wetzel & D. F. Whigham (eds), Wetland Ecology and Management. Proceedings of the First International Wetlands Conference. International Scientific Publisher, Jaipur, India: 397–403.Google Scholar
  40. Richardson, C. J. & C. B. Craft, 1993. Effective phosphorus retention in wetlands: fact or fiction? In Moshiri, G. A. (ed.), Constructed Wetlands for Water Quality Improvement. Lewis, Boca Raton, FL: 271–282.Google Scholar
  41. Smart, M. M., 1980. Annual changes of nitrogen and phosphorus in two aquatic macrophytes (Nymphaea tuberosa and Ceratophyllum demersum). Hydrobiologia 70: 31–35.CrossRefGoogle Scholar
  42. Spencer, W. E. & R. G. Wetzel, 1993. Acclimation of photosynthesis and dark respiration of a submersed Angiosperm beneath ice in a temperate lake. Plant Physiology 101: 985–991.PubMedGoogle Scholar
  43. Succow, M., 2001a. Zusammenfassende Beurteilung der Folgen tiefgreifender agrarischer Nutzungsintensivierung der letzten Jahrzehnte auf die Niedermoorstandorte Nordostdeutschlands. In Succow, M. & H. Joosten (eds), Landschaftsökologische Moorkunde. Schweizerbart, Stuttgart, Germany: 463–470.Google Scholar
  44. Succow, M., 2001b. Durchströmungsmoore. In Succow, M. & H. Joosten (eds), Landschaftsökologische Moorkunde. Schweizerbart, Stuttgart, Germany: 472–480.Google Scholar
  45. Szabó, S., M. Braun, P. Nagy, S. Balázsy & O. Reisinger, 2000. Decomposition of duckweed (Lemmna gibba) under axenic and microbial degradation. Hydrobiologia 434: 201–210.CrossRefGoogle Scholar
  46. Timmermann, T., K. Margóczi, G. Takács & K. Vegelin, 2006. Restoring peat forming vegetation by rewetting species-poor fen grasslands: the role of water level for early succession. Applied Vegetation Science 9: 241–250.CrossRefGoogle Scholar
  47. Timmermann, T., H. Joosten & M. Succow, 2009. Restaurierung von Mooren. In Zerbe, S. & G. Wiegleb (eds), Renaturierung von Ökosystemen in Mitteleuropa. Spektrum Akademischer Verlag, Jena, Germany: 55–93.CrossRefGoogle Scholar
  48. Van der Steen, P., A. Brenner & G. Oron, 1998. An integrated duckweed and algae pond system for nitrogen removal and renovation. Water Science and Technology 38: 335–343.CrossRefGoogle Scholar
  49. Vasander, H., E.-S. Tuittila, E. Lode, L. Lundin, M. Ilomets, T. Sallantaus, R. Heikkilä, M.-L. Pitkänen & J. Laine, 2003. Status and restoration of peatlands in northern Europe. Wetlands Ecology and Management 11: 51–63.CrossRefGoogle Scholar
  50. Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment 380: 48–65.PubMedCrossRefGoogle Scholar
  51. Zak, D. & J. Gelbrecht, 2007. The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany). Biogeochemistry 85: 141–151.CrossRefGoogle Scholar
  52. Zak, D., C. Wagner, B. Payer, J. Augustin & J. Gelbrecht, 2010. Phosphorus mobilization in rewetted fens: the effect of altered peat properties and implications for their restoration. Ecological Applications 20: 1336–1349.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • P. Steffenhagen
    • 1
  • D. Zak
    • 2
    Email author
  • K. Schulz
    • 1
  • T. Timmermann
    • 1
  • S. Zerbe
    • 3
  1. 1.Institute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
  2. 2.Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  3. 3.Faculty of Science and TechnologyFree University BozenBozenItaly

Personalised recommendations