Advertisement

Hydrobiologia

, 676:279 | Cite as

Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD)

  • Erik JeppesenEmail author
  • Peeter Nõges
  • Thomas A. Davidson
  • Juta Haberman
  • Tiina Nõges
  • Kätlin Blank
  • Torben L. Lauridsen
  • Martin Søndergaard
  • Carl Sayer
  • Reet Laugaste
  • Liselotte S. Johansson
  • Rikke Bjerring
  • Susanne L. Amsinck
CLADOCERA AS INDICATORS Review Paper

Abstract

With the implementation of the EU Water Framework Directive (WFD), the member states have to classify the ecological status of surface waters following standardised procedures. It was a matter of some surprise to lake ecologists that zooplankton were not included as a biological quality element (BQE) despite their being considered to be an important and integrated component of the pelagic food web. To the best of our knowledge, the decision of omitting zooplankton is not wise, and it has resulted in the withdrawal of zooplankton from many so-far-solid monitoring programmes. Using examples from particularly Danish, Estonian, and the UK lakes, we show that zooplankton (sampled from the water and the sediment) have a strong indicator value, which cannot be covered by sampling fish and phytoplankton without a very comprehensive and costly effort. When selecting the right metrics, zooplankton are cost-efficient indicators of the trophic state and ecological quality of lakes. Moreover, they are important indicators of the success/failure of measures taken to bring the lakes to at least good ecological status. Therefore, we strongly recommend the EU to include zooplankton as a central BQE in the WFD assessments, and undertake similar regional calibration exercises to obtain relevant and robust metrics also for zooplankton as is being done at present in the cases of fish, phytoplankton, macrophytes and benthic invertebrates.

Keywords

Zooplankton Eutrophication Indicator Water Framework Directive (WFD) Lakes Ecological state Water quality 

Notes

Acknowledgments

The authors thank A.M. Poulsen for editing the manuscript. This project was supported by the EU FP-7 Theme 6 projects WISER (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery, Contract No.: 226273) and REFRESH (Adaptive strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, Contract No.: 244121), ‘CLEAR’ (a Villum Kann Rasmussen Centre of Excellence Project), The Research Council for Nature and Universe (272-08-0406), and by the Estonian target funding projects SF0170006s08 and SF0170011s08. TD's contribution was supported by the Marie Curie Intra European Fellowship no. 255180 (PRECISE). The authors are also grateful to Catherine Duigan from the Countryside Commission for Wales (CCW) for commissioning the work on Kenfig Pool. This is a Galathea 3 expedition article.

References

  1. Amsinck, S. L., E. Jeppesen & F. Landkildehus, 2005a. Relationships between environmental variables and zooplankton subfossils in the surface sediments of 36 shallow coastal brackish lakes with special emphasis on the role of fish. Journal of Paleolimnology 33: 39–51.CrossRefGoogle Scholar
  2. Amsinck, S. L., E. Jeppesen & F. Landkildehus, 2005b. Inference of past changes in zooplankton community structure and planktivorous fish abundance from sedimentary subfossils – a study of a coastal lake subjected to major fish kill incidents during the past century. Archiv für Hydrobiologie 162: 363–382.CrossRefGoogle Scholar
  3. Amsinck, S. L., A. Strzelczak, R. Bjerring, F. Landkildehus, T. L. Lauridsen, K. Christoffersen & E. Jeppesen, 2006. Lake depth rather than planktivory determines cladoceran community structure in Faroese lakes – evidence from contemporary data and sediments. Freshwater Biology 51: 2124–2142.CrossRefGoogle Scholar
  4. Andronikova, I., 1996. Zooplankton characteristics in monitoring of Lake Ladoga. Hydrobiologia 322: 173–179.CrossRefGoogle Scholar
  5. Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 697–709.CrossRefGoogle Scholar
  6. Balayla, D. J., T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2010. Winter fish kills and zooplankton in future scenarios of climate change. Hydrobiologia 646: 159–172.CrossRefGoogle Scholar
  7. Battarbee, R., N. J. Anderson, E. Jeppesen & P. Leavitt, 2005. Eutrophication and oligotrophication – the combined role of palaeolimnological and observational records. Freshwater Biology 50: 1772–1780.CrossRefGoogle Scholar
  8. Beklioğlu, M., S. Romo, I. Kagalou, X. Quintana & E. Bécares, 2007. State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584: 317–326.CrossRefGoogle Scholar
  9. Benndorf, J., 1995. Possibilities and limits for controlling eutrophication by biomanipulation. Internationale Revue der Gesamten Hydrobiologie 80: 519–534.CrossRefGoogle Scholar
  10. Birks, H., 1980. Plant macrofossils in Quaternary lake sediments. Archiv für Hydrobiologie 15: 1–60.Google Scholar
  11. Blank, K., R. Laugaste & J. Haberman, 2010. Temporal and spatial variation in the zooplankton:phytoplankton biomass ratio in a large shallow lake. Estonian Journal of Ecology 59: 99–115.CrossRefGoogle Scholar
  12. Blenckner, T., R. Adrian, D. M. Livingstone, E. Jennings, G. A. Weyhenmeyer, D. G. George, T. Jankowski, M. Jarvinen, C. N. Aonghusa, T. Noges, T. D. Straile & K. Teubner, 2007. Large-scale climatic signatures in lakes across Europe: a meta-analysis. Global Change Biology 13: 1314–1326.CrossRefGoogle Scholar
  13. Bos, D. G., B. F. Cumming, C. E. Watters & J. P. Smol, 1996. The relationship between zooplankton, conductivity and lake-water ionic composition in 111 lakes from the Interior Plateau of British Colombia, Canada. International Journal of Salt Lake Research 5: 1–15.CrossRefGoogle Scholar
  14. Bos, D. G., B. F. Cumming & J. P. Smol, 1999. Cladocera and Anastraca from the Interior Plateau of British Columbia Canada, as paleolimnological indicators of salinity and lake level. Hydrobiologia 39: 129–141.CrossRefGoogle Scholar
  15. Brodersen, K. P., M. C. Whiteside & C. Lindegaard, 1998. Reconstruction of trophic state in Danish lakes using subfossil chydorid (Cladocera) assemblages. Canadian Journal of Aquatic Sciences 55: 1093–1103.CrossRefGoogle Scholar
  16. Brooks, L. & I. Dodson, 1965. Predation, body size and composition of the plankton. Science 50: 28–35.CrossRefGoogle Scholar
  17. Brucet, S., D. Boix, S. Gascón, J. Sala, X. D. Quintana, A. Badosa, M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32: 692–702.CrossRefGoogle Scholar
  18. Buchaca, T., T. Skov, S. Amsinck, V. Gonçalves, J. M. N. Azevedo & E. Jeppesen, 2011. Rapid ecological shift following piscivorous fish introduction to increasingly eutrophic Lake Furnas (Azores Archipelago, Portugal): a paleoecological approach. Ecosystems 14: 458–477.CrossRefGoogle Scholar
  19. Caroni, R. & K. Irvine, 2010. The potential of zooplankton communities for ecological assessment of lakes: redundant concept or political oversight? Biology and Environment: Proceedings of the Royal Irish Academy 110B: 35–53.CrossRefGoogle Scholar
  20. Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. E. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71: 163–186.CrossRefGoogle Scholar
  21. CIS, 2003. Monitoring under the Water Framework Directive. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No 7. Working Group 2.7 – Monitoring. European Communities, Luxembourg.Google Scholar
  22. Cole, J. J., M. L. Pace, S. R. Carpenter & J. F. Kitchell, 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography 45: 1718–1730.CrossRefGoogle Scholar
  23. Davidson, T. A. 2006. Zooplankton ecology and palaeoecology in nutrient enriched shallow lakes. PhD Thesis, University College of London, UK.Google Scholar
  24. Davidson, T. & P. Appleby, 2003. The environmental history of Kenfig Pool cSAC Contract Science Report, no 561. Countryside Council for Wales.Google Scholar
  25. Davidson, T., C. Sayer, H. Bennion, C. David, N. Rose & M. Wade, 2005. A 250 year comparison of historical, macrofossil and pollen records of aquatic plants in a shallow lake. Freshwater Biology 50: 1671–1686.CrossRefGoogle Scholar
  26. Davidson, T., C. Sayer, M. Perrow, M. Bramm & E. Jeppesen, 2007. Are the controls of species composition similar for contemporary and sub-fossil cladoceran assemblages? A study of 39 shallow lakes of contrasting trophic status. Journal of Paleolimnology 38: 117–134.CrossRefGoogle Scholar
  27. Davidson, T., C. Sayer, P. Langdon, A. Burgess & M. Jackson, 2010a. Inferring past zooplanktivorous fish and macrophyte density in a shallow lake: application of a new regression tree model. Freshwater Biology 55: 584–599.CrossRefGoogle Scholar
  28. Davidson, T., C. Sayer, M. Perrow, M. Bramm & E. Jeppesen, 2010b. The simultaneous inference of zooplanktivorous fish and macrophyte density from sub-fossil cladoceran assemblages: a multivariate regression tree approach. Freshwater Biology 55: 546–564.CrossRefGoogle Scholar
  29. Davidson, T. A., H. Bennion, C. Sayer, E. Jeppesen, G. H. Clarke, D. Morley, B. V. Odgaard, P. Rasmussen, R. Rawcliffe, J. Salgado & S. L. Amsinck, this volume. The role of cladocerans in tracking long-term in shallow lake trophic status. Hydrobiologia.Google Scholar
  30. Duigan, C. & H. Birks, 2000. The late-glacial and early-Holocene palaeoecology of cladoceran microfossil assemblages at Kråkenes, western Norway, with a quantitative reconstruction of temperature changes. Journal of Paleolimnology 23: 67–76.CrossRefGoogle Scholar
  31. EEA, 1996. EEA Topic Report 2: Inland Waters: Surface Water Quality Monitoring.Google Scholar
  32. Gannon, J. E. & R. S. Stemberger, 1978. Zooplankton (especially crustacean and rotifers) as indicators of water quality. Transactions of the American Microscopical Society 97: 16–35.CrossRefGoogle Scholar
  33. Gliwicz, Z. M., 2003. Between hazards of starvation and risk of predation: the ecology of offshore animals. International Ecology Institute, Oldendorf/Luhe.Google Scholar
  34. Gurney, R., 1929. The freshwater Crustacea of Norfolk. Transaction of the Norfolk and Norwich Naturalists Society 12: 550–581.Google Scholar
  35. Gyllström, M., L.-A. Hansson, E. Jeppesen, F. Garcia-Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kornijów, M. Miracle, M. Nykänen, T. Nõges, S. Romo, D. Stephen, E. Van Donk & B. Moss, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50: 2008–2021.CrossRefGoogle Scholar
  36. Haberman, J., 1996. Contemporary state of the zooplankton in Lake Peipsi. Hydrobiologia 338: 113–123.CrossRefGoogle Scholar
  37. Haberman, J., 1998. Zooplankton of Lake Võrtsjärv. Limnologica 28: 49–65.Google Scholar
  38. Haberman, J. & H. Künnap, 2002. Mean zooplankter weight as a characteristic feature of an aquatic ecosystem. Proceedings of the Estonian Academy of Sciences: Biology, Ecology 51: 26–44.Google Scholar
  39. Haberman, J. & R. Laugaste, 2003. On characteristics reflecting the trophic state of large and shallow Estonian lakes (L. Peipsi, L. Võrtsjärv). Hydrobiologia 506: 737–744.CrossRefGoogle Scholar
  40. Haberman, J., R. Laugaste & T. Nõges, 2007. The role of cladocerans reflecting the trophic status of two large and shallow Estonian lakes. Hydrobiologia 584: 157–166.CrossRefGoogle Scholar
  41. Harmsworth, R. & M. Whiteside, 1968. Relation of Cladoceran remains in lake sediments to primary productivity lakes. Ecology 49: 998–1000.CrossRefGoogle Scholar
  42. Havens, K. E. & J. B. Beaver, 2011. Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia. doi: 10.1007/s10750-010-0386-5.
  43. Hrbacek, J., M. Dvorakova, V. Korinek & L. Prochazkova, 1961. Demonstration of the effect of the fish stock on species composition of zooplankton and the integrity of metabolism of the whole plankton assemblage. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 18: 162–170.Google Scholar
  44. Jackson, D. A., 1995. PROTEST: a procrustean randomization test of community environment concordance. Écoscience 2: 297–303.Google Scholar
  45. Jackson, L. J., M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2007. A comparison of shallow Danish and Canadian lakes and implications of climate change. Freshwater Biology 52: 1782–1792.CrossRefGoogle Scholar
  46. Jeppesen, E., E. A. Madsen & J. P. Jensen, 1996. Reconstructing past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshwater Biology 36: 115–127.CrossRefGoogle Scholar
  47. Jeppesen, E., J. P. Jensen, J. Windolf, T. Lauridsen, M. Søndergaard, K. Sandby & P. Hald Møller, 1998. Changes in nitrogen retention in shallow eutrophic lakes following a decline in density of cyprinids. Archiv für Hydrobiologie 142: 129–152.Google Scholar
  48. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. L. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish Lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201–218.CrossRefGoogle Scholar
  49. Jeppesen, E., P. Leavitt, L. De Meester & J. P. Jensen, 2001a. Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends in Ecology & Evolution 16: 191–198.CrossRefGoogle Scholar
  50. Jeppesen, E., J. P. Jensen, H. Skovgaard & C. B. Hvidt, 2001b. Changes in the abundance of planktivorous fish in Lake Skanderborg during the past two centuries – a palaeoecological approach. Palaeogeography Palaeoclimatology Palaeoecology 172: 143–152.CrossRefGoogle Scholar
  51. Jeppesen, E., J. P. Jensen, S. L. Amsinck, F. Landkildehus, T. Lauridsen & S. F. Mitchell, 2002. Reconstructing the historical changes in Daphnia mean size and planktivorous fish abundance in lakes from the size of Daphnia ephippia in the sediment. Journal of Paleolimnology 27: 133–143.CrossRefGoogle Scholar
  52. Jeppesen, E., J. P. Jensen, C. Jensen, B. Faafeng, P. Brettum, D. Hessen, M. Søndergaard, T. Lauridsen & K. Christoffersen, 2003a. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: study of 466 lakes from the temperate zone to the Arctic. Ecosystems 6: 313–325.CrossRefGoogle Scholar
  53. Jeppesen, E., J. P. Jensen, T. L. Lauridsen, S. L. Amsinck, K. Christoffersen, M. Søndergaard & S. F. Mitchell, 2003b. Sub-fossils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia 491: 1573–5117.CrossRefGoogle Scholar
  54. Jeppesen, E., J. P. Jensen, M. Søndergaard & T. Lauridsen, 2005. Response of fish and plankton to nutrient loading reduction in 8 shallow Danish lakes with special emphasis on seasonal dynamics. Freshwater Biology 50: 1616–1627.CrossRefGoogle Scholar
  55. Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, M. Beklioglu, A. Özen & J. E. Olesen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1030–1041.CrossRefGoogle Scholar
  56. Johansson, L. S., S. Amsinck, R. Bjerring & E. Jeppesen, 2005. Holocene lake development at Lake Dallund, Denmark: trophic structure inferred from cladoceran subfossils. Holocene 15: 1143–1151.CrossRefGoogle Scholar
  57. Karabin, A., 1985. Pelagic zooplankton (Rotatoria + Cladocera) variation in the process of lake eutrophication. I. Structural and quantitative features. Ekologia Polska 33: 567–616.Google Scholar
  58. Kattel, G. R., R. W. Battarbee, A. Mackay & H. J. B. Birks, 2007. Are cladoceran fossils in lake sediment samples a biased reflection of the communities from which they are derived? Journal of Paleolimnology 38: 157–181.CrossRefGoogle Scholar
  59. Korhola, A., H. Olander & T. Blom, 2000. Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. Journal of Paleolimnology 24: 43–54.CrossRefGoogle Scholar
  60. Mäemets, A., 1980. Izmenenija zooplanktona. – Antropogennoe vozdeistvije na malye ozera [Changes of zooplankton. – Anthropogenic impact to small lakes]. Leningrad 54–64 (in Russian).Google Scholar
  61. Moss, B., 2008. The Water Framework Directive: total environment or political compromise? Journal of the Total Environment 400: 32–41.CrossRefGoogle Scholar
  62. Moss, B., S. Stephen, C. Alvarez, E. Becares, W. van de Bund, E. van Donk, E. de Eyto, T. Feldmann, C. Fernández-Aláez, M. Fernández-Aláez, R. J. M. Franken, F. García-Criado, E. Gross, M. Gyllström, L.-A. Hansson, K. Irvine, A. Järvalt, J. P. Jensen, E. Jeppesen, T. Kairesalo, R. Kornijow, T. Krause, H. Künnap, A. Laas, L. Lill, H. Luup, M. A. Miracle, P. Nõges, T. Nõges, M. Nykannen, O. Ott, E. T. H. M. Peeters, G. Phillips, S. Romo, J. Salujõe, M. Scheffer, K. Siewertsen, T. Tesch, H. Timm, L. Tuvikene, I. Tonno, K. Vakilainnen & T. Virro, 2003. The determination of ecological quality in shallow lakes – a tested expert system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Systems 13: 507–550.CrossRefGoogle Scholar
  63. Nevalainen, L., 2010. Evaluation of microcrustacean (Cladocera, Chydoridae) biodiversity based on sweep net and surface sediment samples. Ecoscience 17: 356–364.CrossRefGoogle Scholar
  64. Nevalainen, L., 2011. Intra-lake heterogeneity of sedimentary cladoceran (Crustacea) assemblages forced by local hydrology. Hydrobiologia. doi: 10.1007/s10750-011-0707-3.
  65. Nevalainen, L., K. Sarmaja-Korjonen & T. P. Luoto, 2011. Sedimentary Cladocera as indicators of past water level changes in shallow northern lakes. Quaternary Research 75: 430–437.CrossRefGoogle Scholar
  66. Parpală, L., L. G. Tóth, V. Zinevici, P. Németh & K. Szalontai, 2003. Structure and production of the metazoan zooplankton in Lake Balaton (Hungary) in summer. Hydrobiologia 506: 347–351.CrossRefGoogle Scholar
  67. Premazzi, G. & G. Chiaudiani, 1992. Ecological quality of surface waters. Quality assessment schemes for European Community lakes. EUR 14563 EN. European Commission, Joint Research Centre, Ispra, Italy.Google Scholar
  68. Radwan, S. & B. Popiołek, 1989. Percentage of rotifers in spring zooplankton in lakes of different trophy. Hydrobiologia 186(187): 235–238.CrossRefGoogle Scholar
  69. Ruuhijärvi, J., M. Rask, S. Vesala, A. Westermark, M. Olin, J. Keskitalo & A. Lehtovaara, 2010. Recovery of the fish community and changes in the lower trophic levels in a eutrophic lake after a winter kill of fish. Hydrobiologia 646: 145–158.CrossRefGoogle Scholar
  70. Sarmaja-Korjonen, K., 2003. Chydorid ephippia as indicators of environmental changes – biostratigraphical evidence from two lakes in southern Finland. The Holocene 13: 691–700.CrossRefGoogle Scholar
  71. Sayer, C. D., T. A. Davidson, J. I. Jones & P. G. Langdon, 2010a. Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshwater Biology 55: 487–499.CrossRefGoogle Scholar
  72. Sayer, C. D., A. Burgess, K. Kari, T. A. Davidson, S. Peglar, H. Yang & N. Rose, 2010b. Long-term dynamics of submerged macrophytes and algae in a small and shallow, eutrophic lake: implications for the stability of macrophyte-dominance. Freshwater Biology 55: 565–583.CrossRefGoogle Scholar
  73. Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: an ecosystem approach to lake restoration. In Brezonik, P. L. & J. L. Fox (eds), Proceedings symposium on water quality management through biological control, University of Florida: 85–96.Google Scholar
  74. Smol, J. P., 1991. Are we building enough bridges between paleolimnology and aquatic ecology? Hydrobiologia 214: 201–206.CrossRefGoogle Scholar
  75. Søndergaard, M., E. Jeppesen, J. P. Jensen & S. L. Amsinck, 2005. Water Framework Directive: ecological classification of Danish lakes. Journal of Applied Ecology 42: 616–629.CrossRefGoogle Scholar
  76. Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration in Denmark and The Netherlands: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.CrossRefGoogle Scholar
  77. Søndergaard, M., L. Liboriussen, A. R. Pedersen & E. Jeppesen, 2008. Lake restoration by fish removal: long-term effects in 36 Danish lakes. Ecosystems 11: 1291–1305.CrossRefGoogle Scholar
  78. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology and Oceanography 29: 472–486.CrossRefGoogle Scholar
  79. Vadeboncoeur, Y., E. Jeppesen, J. Van der Zanden, H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.CrossRefGoogle Scholar
  80. Vandekerkhove, J., S. Declerck, E. Jeppesen, J. Conde-Porcuna, L. Brendonck & L. De Meester, 2005. Dormant propagule banks integrate spatio-temporal heterogeneity in cladoceran communities. Oecologia 142: 109–116.PubMedCrossRefGoogle Scholar
  81. Verschuren, D. & L. F. Marnell, 1997. Fossil zooplankton and the historical status of Westslope cutthroat trout in a headwater lake of Glacier National Park, Montana. Transactions of the American Fisheries Society 126: 21–34.CrossRefGoogle Scholar
  82. Verschuren, D., C. Cocquyt, J. Tibby, C. N. Roberts & P. R. Leavitt, 1999a. Long-term dynamics of algal and invertebrate communities in a fluctuating tropical soda lake. Limnology and Oceanography 44: 1216–1231.CrossRefGoogle Scholar
  83. Verschuren, D., J. Tibby, P. R. Leavitt & C. N. Roberts, 1999b. The environmental history of a climate-sensitive lake in the former ‘White Highlands’ of central Kenya. Ambio 28: 494–501.Google Scholar
  84. Verschuren, D., J. Tibby, K. Sabbe & C. N. Roberts, 2000. Effects of lake level, salinity and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81: 164–182.CrossRefGoogle Scholar
  85. Whiteside, M. C., 1970. Danish chydorid Cladocera: modern ecology and core studies. Ecological Monographs 40: 79–132.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Erik Jeppesen
    • 1
    • 2
    • 3
    Email author
  • Peeter Nõges
    • 4
  • Thomas A. Davidson
    • 1
    • 5
  • Juta Haberman
    • 4
  • Tiina Nõges
    • 4
  • Kätlin Blank
    • 4
  • Torben L. Lauridsen
    • 1
    • 3
  • Martin Søndergaard
    • 1
    • 3
  • Carl Sayer
    • 5
  • Reet Laugaste
    • 4
  • Liselotte S. Johansson
    • 1
  • Rikke Bjerring
    • 1
  • Susanne L. Amsinck
    • 1
  1. 1.Department of BioscienceAarhus UniversitySilkeborgDenmark
  2. 2.Greenland Climate Research Centre (GCRC)Greenland Institute of Natural ResourcesNuukGreenland
  3. 3.Sino-Danish Centre for Education and Research (SDC)BeijingChina
  4. 4.Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesRannu, TartumaaEstonia
  5. 5.Department of Geography, Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations