Hydrobiologia

, Volume 678, Issue 1, pp 85–97

Transition zones in small lakes: the importance of dilution and biological uptake on lake-wide heterogeneity

  • Eleanor B. Mackay
  • Ian D. Jones
  • Andrew M. Folkard
  • Stephen J. Thackeray
Primary Research Paper

Abstract

Stream inflows are frequently the dominant route for nutrients from catchments to lakes. Studies on large, deep reservoirs and lakes have shown the importance of the fate of inflow plumes for nutrient accessibility to phytoplankton. However, few studies have considered shallow water transition zones between streams and lakes, often a feature of small lakes. This study examined the spatial and temporal dynamics of phosphorus in a shallow stream-lake transition in a small lake to improve our understanding of how phosphorus reaches the pelagic zone. Despite the high discharge levels, and the importance of dilution in explaining observed spatial gradients in soluble reactive phosphorus (SRP), total phosphorus (TP) and chlorophyll a, we found evidence for significant biological uptake of SRP in the inflow embayment during the growing season. This may represent an additional mechanism for the dispersal of phosphorus from the embayment into the lake. The length scale for the transition zone was short (~150 m) which indicated that the direct influence of the inflow on the wider lake was small. However, SRP measurements taken only from the pelagic site underestimated mean lake-wide concentrations when including transition zones by up to 18% during the growing season.

Keywords

Inflows Transition zone SRP Chlorophyll a Nutrient delivery Esthwaite Water 

References

  1. Aldridge, K. T., J. D. Brookes & G. G. Ganf, 2010. Changes in abiotic and biotic phosphorus uptake across a gradient of stream condition. Rivers Research and Applications 26: 636–649.Google Scholar
  2. Auer, M. T. & L. A. Bub, 2004. Selected features of the distribution of chlorophyll along the southern shore of Lake Superior. Journal of Great Lakes Research 30: 269–284.CrossRefGoogle Scholar
  3. Björk-Ramberg, S., 1985. Uptake of phosphate and inorganic nitrogen by a sediment-algal system in a subarctic lake. Freshwater Biology 15: 175–183.CrossRefGoogle Scholar
  4. Bormans, M., P. W. Ford & L. Fabbro, 2005. Spatial and temporal variability in cyanobacterial populations controlled by physical processes. Journal of Plankton Research 27: 61–70.CrossRefGoogle Scholar
  5. Botelho, D. A. & J. Imberger, 2007. Dissolved oxygen response to wind-inflow interactions in a stratified reservoir. Limnology and Oceanography 52: 2027–2052.CrossRefGoogle Scholar
  6. Carmack, E. C., C. B. J. Gray, C. H. Pharo & R. J. Daley, 1979. Importance of lake-river interaction on seasonal patterns in the general circulation of Kamloops Lake, British Columbia. Limnology and Oceanography 24: 634–644.CrossRefGoogle Scholar
  7. Carpenter, S. R., K. L. Cottingham & D. E. Schindler, 1992. Biotic feedbacks in lake phosphorus cycles. Trends in Ecology & Evolution 7: 332–336.CrossRefGoogle Scholar
  8. Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot & G. E. Likens, 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323: 1014–1015.PubMedCrossRefGoogle Scholar
  9. Cuker, B. E., P. T. Gama & J. M. Burkholder, 1990. Type of suspended clay influences lake productivity and phytoplankton community response to phosphorus loading. Limnology and Oceanography 35: 830–839.CrossRefGoogle Scholar
  10. Davison, W., S. I. Heaney, J. F. Talling & E. Rigg, 1980. Seasonal transformations and movements of iron in a productive English lake with deep-water anoxia. Schweizerische Zeitschrift Fur Hydrologie 42: 196–224.CrossRefGoogle Scholar
  11. Downing, J. A., Y. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.CrossRefGoogle Scholar
  12. Ejsmont-Karabin, J., J. Królikowska & T. Węgleńska, 1993. Patterns of spatial distribution of phosphorus regeneration by zooplankton in a river-lake transitory zone. Hydrobiologia 251: 275–284.CrossRefGoogle Scholar
  13. Fischer, H. B. & R. D. Smith, 1983. Observations of transport to surface waters from a plunging inflow into Lake Mead. Limnology and Oceanography 28: 258–272.CrossRefGoogle Scholar
  14. Fischer, H. B., J. E. List, R. C. Y. Koh, J. Imberger & N. H. Brooks, 1979. Mixing in inland and coastal waters. Academic Press, Inc., London.Google Scholar
  15. Ford, D. E., 1990. Reservoir transport processes. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir limnology: ecological perspectives. John Wiley & Sons Inc., New York.Google Scholar
  16. George, D. G. & S. I. Heaney, 1978. Factors influencing the spatial distribution of phytoplankton in a small productive lake. Journal of Ecology 66: 133–155.CrossRefGoogle Scholar
  17. Göransson, E., R. K. Johnson & A. Wilander, 2004. Representativity of a mid-lake surface water chemistry sample. Environmental Monitoring and Assessment 95: 221–238.PubMedCrossRefGoogle Scholar
  18. Hall, G. H., S. C. Maberly, C. S. Reynolds, I. J. Winfield, J. B. James, J. E. Parker, M. M. Dent, J. M. Fletcher, B. M. Simon & E. Smith, 2000. Feasibility study on the restoration of three Cumbrian lakes. Centre for Ecology and Hydrology, Ambleside.Google Scholar
  19. Hart, R. C. & P. D. Wragg, 2009. Recent blooms of the dinoflagellate Ceratium in Albert Falls Dam (KZN): history, causes, spatial features and impacts on a reservoir ecosystem and its zooplankton. Water SA 35: 455–468.Google Scholar
  20. Haygarth, P. M., F. L. Wood, A. L. Heathwaite & P. J. Butler, 2005. Phosphorus dynamics observed through increasing scales in a nested headwater-to-river channel study. Science of the Total Environment 344: 83–106.PubMedCrossRefGoogle Scholar
  21. Heathwaite, A. L., A. I. Fraser, P. J. Johnes, M. Hutchins, E. Lord & D. Butterfield, 2003. The phosphorus indicators tool: a simple model of diffuse P loss from agricultural land to water. Soil Use and Management 19: 1–11.CrossRefGoogle Scholar
  22. Ihaka, R. & R. Gentleman, 1996. R: a language for data analysis and graphics. Journal of Computational and Graphical Sciences 5: 299–314.CrossRefGoogle Scholar
  23. Imberger, J., 1998. Physical Processes in Lakes and Oceans. American Geophysical Union, Washington, DC.CrossRefGoogle Scholar
  24. Istvánovics, V., 1994. Fractional composition, adsorption and release of sediment phosphorus in the Kis-Balaton reservoir. Water Research 28: 717–726.CrossRefGoogle Scholar
  25. Izydorczyk, K., A. Skowron, A. Wojtal & T. Jurczak, 2008. The stream inlet to a shallow bay of a drinking water reservoir, a ‘hot-spot’ for Microcystis blooms initiation. International Review of Hydrobiology 93: 257–268.CrossRefGoogle Scholar
  26. Jirka, G. H. & M. Watanabe, 1980. Thermal structure of cooling ponds. Journal of the Hydraulics Division-ASCE 106: 701–715.Google Scholar
  27. Jones, I. D. & J. A. Elliott, 2007. Modelling the effects of changing retention time on abundance and composition of phytoplankton species in a small lake. Freshwater Biology 52: 988–997.CrossRefGoogle Scholar
  28. Jones, I. D., T. Page, J. A. Elliott, S. J. Thackeray & A. L. Heathwaite, 2011. Increases in lake phytoplankton biomass caused by future climate-driven changes to seasonal river flow. Global Change Biology. doi:10.1111/j.1365-2486.2010.02332.x.
  29. Kapustina, L. L., 1996. Bacterioplankton response to eutrophication in Lake Ladoga. Hydrobiologia 322: 17–22.CrossRefGoogle Scholar
  30. Kimmel, B. L., O. T. Lind & L. J. Paulson, 1990. Reservior primary production. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. John Wiley & Sons Inc., New York.Google Scholar
  31. Laborde, S., J. P. Antenucci, D. Copetti & J. Imberger, 2010. Inflow intrusions at multiple scales in a large temperate lake. Limnology and Oceanography 55: 1301–1312.CrossRefGoogle Scholar
  32. Le Pape, O., F. Chauvet, Y. Désaunay & D. Guérault, 2003. Relationship between interannual variations of the river plume and the extent of nursery grounds for the common sole (Solea solea, L.) in Vilaine Bay. Effects on recruitment variability. Journal of Sea Research 50: 177–185.CrossRefGoogle Scholar
  33. Lihan, T., S. Z. Nurain, M. A. J. Amizam, A. R. Sahibin & A. M. Mustapha, 2010. Determination of spatial and temporal variability of Pahang River plume using remote sensing images. Map Asia 2010 and ISG 2010, Kuala Lumpur, Malaysia.Google Scholar
  34. Likens, G. E., 1972. Eutrophication and aquatic ecosystems. In Likens, G. E. (ed.), Nutrients and Eutrophication: The Limiting Nutrient Controversy. Proceedings of the Symposium on Nutrients and Eutrophication: The Limiting-Nutrient Controversy. American Society of Limnology and Oceanography, Lawrence, Kansas.Google Scholar
  35. Liu, Y., P. MacCready & B. M. Hickey, 2009. Columbia River plume patterns in summer 2004 as revealed by a hindcast coastal ocean circulation model. Geophysical Research Letters 36. doi:10.1029/2008GL036447.
  36. Lohman, K. & J. R. Jones, 2010. Longitudinal patterns in nutrient chemistry and algal chlorophyll below point sources in three northern Ozark streams. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 30: 1559–1566.Google Scholar
  37. Loizeau, J.-L. & J. Dominik, 2000. Evolution of the Upper Rhone River discharge and suspended sediment load during the last 80 years and some implications for Lake Geneva. Aquatic Sciences 62: 54–67.CrossRefGoogle Scholar
  38. MacIntyre, S. & J. M. Melack, 1995. Vertical and horizontal transport in lakes: linking littoral, benthic, and pelagic habitats. Journal of the North American Benthological Society 14: 599–615.CrossRefGoogle Scholar
  39. MacIntyre, S., J. O. Sickman, S. A. Goldthwait & G. W. Kling, 2006. Physical pathways of nutrient supply in a small, ultraoligotrophic artic lake during summer stratification. Limnology and Oceanography 51: 1107–1124.CrossRefGoogle Scholar
  40. Mackay, E. B., I. D. Jones, A. M. Folkard & P. A. Barker, 2011. Contribution of sediment focusing to heterogeneity of organic carbon and phosphorus burial in small lakes. Freshwater Biology. doi:10.1111/j.1365-2427.2011.02616.x.
  41. Madgwick, G., I. D. Jones, S. J. Thackeray, J. A. Elliott & H. J. Miller, 2006. Phytoplankton communities and antecedent conditions: high resolution sampling in Esthwaite Water. Freshwater Biology 51: 1798–1810.CrossRefGoogle Scholar
  42. Marti, E., J. Aumatell, L. Godé, M. Poch & F. Sabater, 2004. Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. Journal of Environmental Quality 33: 285–293.PubMedCrossRefGoogle Scholar
  43. McColl, R. H. S., 1974. Self-purification of small freshwater streams: phosphate, nitrate and ammonia removal. New Zealand Journal of Marine and Freshwater Research 8: 375–388.CrossRefGoogle Scholar
  44. McDowell, R. W., B. J. F. Biggs, A. N. Sharpley & L. Nguyen, 2004. Connecting phosphorus loss from agricultural landscapes to surface water quality. Chemistry and Ecology 20: 1–40.CrossRefGoogle Scholar
  45. Miller, H. J., 2008. Investigation into Mechanisms for the Internal Supply of Phosphorus to the Epilimnion of a Eutrophic Lake. PhD Thesis, Geography Department, Lancaster University, Lancaster.Google Scholar
  46. Moll, R. & M. Brahce, 1986. Seasonal and spatial distribution of bacteria, chlorophyll, and nutrients in nearshore Lake Michigan. Journal of Great Lakes Research 12: 52–62.CrossRefGoogle Scholar
  47. Monismith, S. G., J. Imberger & M. L. Morison, 1990. Convective motions in the sidearm of a small reservoir. Limnology and Oceanography 35: 1676–1702.CrossRefGoogle Scholar
  48. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  49. Pacini, N. & R. Gächter, 1999. Speciation of riverine particulate phosphorus during rain events. Biogeochemistry 47: 87–109.Google Scholar
  50. Pickrill, R. A. & J. Irwin, 1982. Predominant headwater inflow and its control of lake-river interactions in Lake Wakatipu. New Zealand Journal of Marine and Freshwater Research 16: 201–213.CrossRefGoogle Scholar
  51. Pinheiro, J. C. & D. M. Bates, 2000. Mixed Effects Models in S and S-PLUS. Springer, New York.CrossRefGoogle Scholar
  52. Reynolds, C. S., 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biology 14: 111–142.CrossRefGoogle Scholar
  53. Reynolds, C. S. & P. S. Davies, 2001. Sources and bioavailabiltiy of phosphorus fractions in freshwaters: a British perspective. Biological Reviews 76: 27–64.PubMedCrossRefGoogle Scholar
  54. Reynolds, C. S. & A. E. Walsby, 1975. Water-blooms. Biological Reviews 50: 437–481.CrossRefGoogle Scholar
  55. Reynolds, C. S., R. L. Oliver & A. E. Walsby, 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand Journal of Marine and Freshwater Research 21: 379–390.CrossRefGoogle Scholar
  56. Rigler, F. H., 1956. A tracer study of the phosphorus cycle in lake water. Ecology 37: 550–562.CrossRefGoogle Scholar
  57. Rueda, F. J., W. E. Fleenor & I. de Vicente, 2007. Pathways of river nutrients towards the euphotic zone in a deep-reservoir of small size: uncertainty analysis. Ecological Modelling 202: 345–361.CrossRefGoogle Scholar
  58. Schindler, D. W., 2006. Recent advances in the understanding and management of eutrophication. Limnology and Oceanography 51: 356–363.CrossRefGoogle Scholar
  59. Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.CrossRefGoogle Scholar
  60. Spigel, R. H., C. Howard-Williams, M. M. Gibbs, S. Stephens & B. Waugh, 2005. Field calibration of a formula for entrance mixing of river inflows to lakes: Lake Taupo, North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 39: 785–802.CrossRefGoogle Scholar
  61. Stabel, H. H. & M. Geiger, 1985. Phosphorus adsorption to riverine suspended matter: implications for the P-budget of Lake Constance. Water Research 19: 1347–1352.CrossRefGoogle Scholar
  62. Stephens, K., 1963. Determination of low phosphate concentrations in lake and marine waters. Limnology and Oceanography 8: 361–362.CrossRefGoogle Scholar
  63. Stevens, C. L., P. F. Hamblin, G. A. Lawrence & F. M. Boyce, 1995. River-induced transport in Kootenay Lake. Journal of Environmental Engineering 121: 830–837.CrossRefGoogle Scholar
  64. Talling, J. F., 1974. Photosynthetic pigments: general outline of spectrophotmetric methods; specific procedures. In Vollenweider, R. A. (ed.), A Manual on Methods of Measuring Primary Production in Aquatic Environments. Blackwell, Oxford: 22–26.Google Scholar
  65. Thackeray, S. J., D. G. George, R. I. Jones & I. J. Winfield, 2004. Quantitative analysis of the importance of wind-induced circulation for the spatial structuring of planktonic populations. Freshwater Biology 49: 1091–1102.CrossRefGoogle Scholar
  66. Thornton, K. W., 1990. Perspectives on reservoir limnology. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological perspectives. John Wiley & Sons, New York.Google Scholar
  67. Twinch, A. J., 1984. The role of bottom sediments in modifying soluble phosphate loads to a dendritic, hypertrophic reservoir. In Eriksson, E. (ed.), Proceedings of the Uppsala Conference. IAHS-AISH Publication No. 150: 381–392.Google Scholar
  68. Vandenberg, J. A., M. C. Ryan, D. D. Nuell & A. Chu, 2005. Field evaluation of mixing length and attenuation of nutrients and fecal coliform in a wastewater effluent plume. Environmental Monitoring and Assessment 107: 45–57.PubMedCrossRefGoogle Scholar
  69. Vidal, J., 2006. Basin Scale Hydrodynamics in a Mediterranean Reservoir. Implications for the Phytoplankton Dynamics. PhD Thesis, University of Girona, Girona.Google Scholar
  70. von Westernhagen, N., 2010. Measurements and Modelling of Eutrophication Processes in Lake Rotoiti, New Zealand. PhD Thesis, Department of Biological Sciences, The University of Waikato, Hamilton.Google Scholar
  71. Wood, F. L., A. L. Heathwaite & P. M. Haygarth, 2005. Evaluating diffuse and point phosphorus contributions to river transfers at different scales in the Taw catchment, Devon, UK. Journal of Hydrology 304: 118–138.CrossRefGoogle Scholar
  72. Wüest, A. & A. Lorke, 2003. Small-scale hydrodynamics in lakes. Annual Review of Fluid Mechanics 35: 373–412.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Eleanor B. Mackay
    • 1
    • 2
  • Ian D. Jones
    • 2
  • Andrew M. Folkard
    • 1
  • Stephen J. Thackeray
    • 2
  1. 1.Centre for Sustainable Water Management, Lancaster Environment CentreLancaster UniversityLancasterUK
  2. 2.Lake Ecosystem Group, Centre for Ecology & HydrologyLancaster Environment CentreLancasterUK

Personalised recommendations