Hydrobiologia

, 675:65 | Cite as

Stress response to daily temperature fluctuations in common carp, Cyprinus carpio L.

  • Teruhiko Takahara
  • Hiroki Yamanaka
  • Alata A. Suzuki
  • Mie N. Honjo
  • Toshifumi Minamoto
  • Ryuji Yonekura
  • Tomoaki Itayama
  • Yukihiro Kohmatsu
  • Takafumi Ito
  • Zen’ichiro Kawabata
Primary Research Paper

Abstract

The littoral zone of lakes and lagoons is often used by fish for feeding or reproduction. However, the large changes in temperature that are typical of natural environments, including the littoral zone, represent a potential stressor for fish. Despite the importance of this habitat, little is known about the effect of daily temperature fluctuations on the stress responses of fish. We monitored daily temperature changes in the near-shore and offshore regions of a natural lagoon between May and July 2008–2010. We observed large temperature fluctuations more frequently in the near-shore zone than the offshore zone. We then exposed common carp (Cyprinus carpio) to a temperature regime similar to that observed in the near-shore zone and measured the levels of cortisol released into the water. The rate of cortisol release increased when carp were exposed to an increase in temperature of ~0.6°C/h over a 5-h period. Conversely, there was no change in the rate of release when temperatures decreased. Our results highlight the importance of maintaining high temporal resolution when evaluating the stress response to daily fluctuations temperature.

Keywords

Cortisol Fish Non-invasive assay Shore Stress Temperature 

Notes

Acknowledgments

We are grateful to Drs. M. Ototake, K. Yuasa, N. Ohsako, and S. Miwa at the NRIA for their comments and discussion of the experimental design. This work was supported by the RIHN C-06 research project.

References

  1. Barton, B. A., 2002. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology 42: 517–525.PubMedCrossRefGoogle Scholar
  2. Barus, V., M. Penaz & K. Kohlmann, 2002. Cyprinus carpio (Linnaeus, 1758). In Banarescu, P. M. & H.-J. Paepke (eds), The Freshwater Fishes of Europe, Volume 5/III: (Cyprinidae 2/III): Carassius to Cyprinus. Gasterosteidae, Aula-Verlag: 85–179.Google Scholar
  3. Beitinger, T. L., 1990. Behavioral reactions for the assessment of stress in fishes. Journal of Great Lakes Research 16: 495–528.CrossRefGoogle Scholar
  4. Ellis, T., J. D. James, C. Stewart & A. P. Scott, 2004. A non-invasive stress assay based upon measurement of free cortisol released into the water by rainbow trout. Journal of Fish Biology 65: 1233–1252.CrossRefGoogle Scholar
  5. Ellis, T., J. D. James, H. Sundh, F. Fridell, K. Sundell & A. P. Scott, 2007. Non-invasive measurement of cortisol and melatonin in tanks stocked with seawater Atlantic salmon. Aquaculture 272: 698–706.CrossRefGoogle Scholar
  6. Engelsma, M. Y., S. Hougee, D. Nap, M. Hofenk, J. H. W. M. Rombout, W. B. Van Muiswinkel & B. M. L. Verburg-van Kemenade, 2003. Multiple acute temperature stress affects leucocyte populations and antibody responses in common carp, Cyprinus carpio L. Fish and Shellfish Immunology 15: 397–410.PubMedCrossRefGoogle Scholar
  7. Fast, M. D., D. M. Muise, R. E. Easy, N. W. Ross & S. C. Johnson, 2006. The effects of Lepeophtheirus salmonis infections on the stress response and immunological status of Atlantic salmon (Salmo salar). Fish and Shellfish Immunology 21: 228–241.PubMedCrossRefGoogle Scholar
  8. Fevolden, S. E., R. Nordmo & T. Refstie, 1993. Disease resistance in Atlantic salmon (Salmo salar) selected for high or low responses to stress. Aquaculture 109: 215–224.CrossRefGoogle Scholar
  9. Fridell, F., K. Gadan, H. Sundh, G. L. Taranger, J. Glette, R. E. Olsen, K. Sundell & Ø. Evensen, 2007. Effect of hyperoxygenation and low water flow on the primary stress response and susceptibility of Atlantic salmon Salmo salar L. to experimental challenge with IPN virus. Aquaculture 270: 23–35.CrossRefGoogle Scholar
  10. Hirai, K. I., 1972. Ecological studies on fry and juvenile of fishes at aquatic plant areas in a bay of Lake Biwa: III. Relationship of the food habits to the habitat of nigorobuna (Carassius carassius) larvae. Japanese Journal of Ecology 22: 69–93. (in Japanese with English abstract).Google Scholar
  11. Honjo, M. N., T. Minamoto, K. Matsui, K. Uchii, H. Yamanaka, A. A. Suzuki, Y. Kohmatsu, T. Iida & Z. Kawabata, 2010. Quantification of cyprinid herpesvirus 3 in environmental water by using an external standard virus. Applied and Environmental Microbiology 76: 161–168.PubMedCrossRefGoogle Scholar
  12. Hou, Y. Y., Y. Suzuki & K. Aida, 1999. Effects of steroid hormones on immunoglobulin M (IgM) in rainbow trout, Oncorhynchus mykiss. Fish Physiology and Biochemistry 20: 155–162.CrossRefGoogle Scholar
  13. Lower, N., A. Moore, A. P. Scott, T. Ellis, J. D. James & I. C. Russell, 2005. A non-invasive method to assess the impact of electronic tag insertion on stress levels in fishes. Journal of Fish Biology 67: 1202–1212.CrossRefGoogle Scholar
  14. Lupica, S. J. & J. W. Turner Jr, 2010. Noninvasive assessment of nitrate-induced stress in koi Cyprinus carpio L. by faecal cortisol measurement. Aquaculture Research 41: 1622–1629.CrossRefGoogle Scholar
  15. Lyytikäinen, T., P. Pylkkö, O. Ritola & P. Lindström-Seppä, 2002. The effect of acute stress and temperature on plasma cortisol and ion concentrations and growth of Lake Inari Arctic charr, Salvelinus alpinus. Environmental Biology of Fishes 64: 195–202.CrossRefGoogle Scholar
  16. Matsui, K., M. Honjo, Y. Kohmatsu, K. Uchii, R. Yonekura & Z. Kawabata, 2008. Detection and significance of koi herpesvirus (KHV) in freshwater environments. Freshwater Biology 53: 1262–1272.CrossRefGoogle Scholar
  17. Minamoto, T., M. N. Honjo & Z. Kawabata, 2009. Seasonal distribution of cyprinid herpesvirus 3 in Lake Biwa, Japan. Applied and Environmental Microbiology 75: 6900–6904.PubMedCrossRefGoogle Scholar
  18. Person-Le Ruyet, J., K. Mahé, N. Le Bayon & H. Le Delliou, 2004. Effects of temperature on growth and metabolism in a mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture 237: 269–280.CrossRefGoogle Scholar
  19. Pottinger, T. G., 2010. A multivariate comparison of the stress response in three salmonid and three cyprinid species: evidence for inter-family differences. Journal of Fish Biology 76: 601–621.PubMedCrossRefGoogle Scholar
  20. Ruane, N. M. & H. Komen, 2003. Measuring cortisol in the water as an indicator of stress caused by increased loading density in common carp (Cyprinus carpio). Aquaculture 218: 685–693.CrossRefGoogle Scholar
  21. Savino, J. F. & R. A. Stein, 1982. Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation. Transactions of the American Fisheries Society 111: 255–266.CrossRefGoogle Scholar
  22. Scott, A. P. & T. Ellis, 2007. Measurement of fish steroids in water – a review. General and Comparative Endocrinology 153: 392–400.PubMedCrossRefGoogle Scholar
  23. Scott, A. P., K. Hirschenhauser, N. Bender, R. Oliveira, R. L. Earley, M. Sebire, T. Ellis, M. Pavlidis, P. C. Hubbard, M. Huertas & A. Canario, 2008. Non-invasive measurement of steroids in fish-holding water: important considerations when applying the procedure to behaviour studies. Behaviour 145: 1307–1328.CrossRefGoogle Scholar
  24. Strange, R. J., C. B. Schreck & J. T. Golden, 1977. Corticoid stress responses to handling and temperature in salmonids. Transactions of the American Fisheries Society 106: 213–218.CrossRefGoogle Scholar
  25. Tanck, M. W. T., G. H. R. Booms, E. H. Eding, S. E. Bonga & J. Komen, 2000. Cold shocks: a stressor for common carp. Journal of Fish Biology 57: 881–894.CrossRefGoogle Scholar
  26. Thomas, R. E., J. A. Gharrett, M. G. Carls, S. D. Rice, A. Moles & S. Korn, 1986. Effects of fluctuating temperature of mortality, stress, and energy reserves of juvenile coho salmon. Transactions of the American Fisheries Society 115: 52–59.CrossRefGoogle Scholar
  27. Uchii, K., A. Telschow, T. Minamoto, H. Yamanaka, M. N. Honjo, K. Matsui & Z. Kawabata, 2011. Transmission dynamics of an emerging infectious disease in wildlife through host reproductive cycles. The ISME Journal 5: 244–251.PubMedCrossRefGoogle Scholar
  28. Watanuki, H., T. Yamaguchi & M. Sakai, 2002. Suppression in function of phagocytic cells in common carp Cyprinus carpio L. injected with estradiol, progesterone or 11-ketotestosterone. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 132: 407–413.PubMedCrossRefGoogle Scholar
  29. Wendelaar Bonga, S. E., 1997. The stress response in fish. Physiological Reviews 77: 591–626.PubMedGoogle Scholar
  30. Wong, S. C., M. Dykstra, J. M. Campbell & R. L. Earley, 2008. Measuring water-borne cortisol in convict cichlids (Amatitlania nigrofasciata): is the procedure a stressor? Behaviour 145: 1283–1305.CrossRefGoogle Scholar
  31. Yamanaka, H., Y. Kohmatsu, T. Minamoto & Z. Kawabata, 2010. Spatial variation and temporal stability of littoral water temperature relative to lakeshore morphometry: environmental analysis from the view of fish thermal ecology. Limnology 11: 71–76.CrossRefGoogle Scholar
  32. Yuma, M., K. Hosoya & Y. Nagata, 1998. Distribution of the freshwater fishes of Japan: an historical overview. Environmental Biology of Fishes 52: 97–124.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Teruhiko Takahara
    • 1
    • 2
  • Hiroki Yamanaka
    • 3
  • Alata A. Suzuki
    • 2
  • Mie N. Honjo
    • 2
  • Toshifumi Minamoto
    • 2
  • Ryuji Yonekura
    • 4
  • Tomoaki Itayama
    • 2
  • Yukihiro Kohmatsu
    • 2
  • Takafumi Ito
    • 5
  • Zen’ichiro Kawabata
    • 2
  1. 1.Institute for Sustainable Sciences and Development (ISSD)Hiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Research Institute for Humanity and Nature (RIHN)KyotoJapan
  3. 3.Department of Environmental Solution Technology, Faculty of Science and TechnologyRyukoku UniversityOtsuJapan
  4. 4.Gifu Prefectural Research Institute for Freshwater Fish and Aquatic EnvironmentsKakamigaharaJapan
  5. 5.Tamaki Station, Aquatic Animal Health DivisionNational Research Institute of Aquaculture (NRIA), Fisheries Research AgencyTamakiJapan

Personalised recommendations