Advertisement

Hydrobiologia

, Volume 675, Issue 1, pp 19–28 | Cite as

Factors affecting the local occurrence of the near-threatened bitterling (Tanakia lanceolata) in agricultural canal networks: strong attachment to its potential host mussels

  • Akira Terui
  • Shin-ichiro S. Matsuzaki
  • Kohji Kodama
  • Masamitsu Tada
  • Izumi Washitani
Primary Research Paper

Abstract

Ecologically specialized species may be more susceptible to anthropogenic impacts than generalist species. Japan’s native bitterlings (subfamily Acheilognathinae), which are specialized to spawn on the gills of certain freshwater mussels, have been declining dramatically during the last few decades. To identify factors affecting the local occurrence of the threatened bitterling species Tanakia lanceolata, we measured its presence and absence, along with several environmental factors, at 68 sites within agricultural canal networks in the Lake Mikata basin, Fukui Prefecture, Japan. Based on the theoretical information approach of Akaike’s information criterion, generalized linear mixed models were constructed. These revealed that the species’ occurrence is strongly affected by five major factors: the presence of freshwater mussels Anodonta sp., water depth, floating plants coverage, the presence of bullfrogs, and submerged plants coverage. The probability of the presence of T. lanceolata was higher at shallower sites with lower floating plants coverage, located within channels containing mussel beds. These results suggest that mussel-containing channel systems are high-priority conservation zones for T. lanceolata.

Keywords

Acheilognathinae Alien species Bitterling Connectivity Freshwater mussel Symbiosis 

Notes

Acknowledgments

The authors sincerely thank Editor Dr. Luis Mauricio Bini and two other reviewers for their valuable and useful comments that helped in improving the manuscript. The authors are sincerely grateful to the members of Fukui Prefectural Coastal Nature Center for assistance in the field. The authors also thank Dr. Munemitsu Akasaka and Dr. Akira Yoshioka for their help with statistical analyses. Finally, the authors sincerely thank Dr. Takehito Yoshida, Dr. Jun Nishihiro, Dr. Jun Ishii, Takahiro Morosawa, and Dr. Junichi Kitamura for their important comments on the earlier drafts of this article. This study was partly supported by the Environmental Technology Development Fund, the Ministry of the Environmental of Japan (no. D-0910), and a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (no. 22310143).

References

  1. Bartoń, K., 2009. MuMIn: multi-model inference. R package version R package, Version 0.12.2. Available from http://r-forge.r-project.org/projects/mumin/.
  2. Bauer, G. & K. Wächtler, 2001. Ecology and Evolution of the Freshwater Mussels Unionoida. Springer, Berlin.CrossRefGoogle Scholar
  3. Beale, C. M., J. J. Lennon, J. M. Yearsley, M. J. Brewer & D. A. Elston, 2010. Regression analysis of spatial data. Ecology Letters 13: 246–264.PubMedCrossRefGoogle Scholar
  4. Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J. S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.CrossRefGoogle Scholar
  5. Bureau of the Convention on Biological Diversity, 2010. Global biodiversity outlook 3. http://www.cbd.int/doc/publications/gbo/gbo3-final-en.pdf. Accessed 20 Feb 2011.
  6. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer, New York.Google Scholar
  7. Carpentier, A., J. M. Paillisson, L. Marion, E. Feunteun, A. Baisez & C. Rigaud, 2003. Trends of a bitterling (Rhodeus sericeus) population in a man-made ditch network. Comptes Rendus Biologies 326: 166–173.CrossRefGoogle Scholar
  8. Clavero, M. & E. Garcia-Berthou, 2005. Invasive species are a leading cause of animal extinctions. Trends in Ecology & Evolution 20: 110.CrossRefGoogle Scholar
  9. Conservation International, 2005. http://www.conservation.org/Documents/cihotspotmap.pdf. Accessed 20 Feb 2011.
  10. Doi, H., 2009. Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Population Ecology 51: 57–64.CrossRefGoogle Scholar
  11. Farwell, M., M. G. Fox, C. D. Moyes & G. Burness, 2007. Can hypoxia tolerance explain differences in distribution of two co-occurring north temperate sunfishes? Environmental Biology of Fishes 78: 83–90.CrossRefGoogle Scholar
  12. Grueber, C. E., R. J. Laws, S. Nakagawa & I. G. Jamieson, 2010. Inbreeding depression accumulation across life-history stages of the endangered takahe. Conservation Biology 24: 1617–1625.PubMedCrossRefGoogle Scholar
  13. Holčík, J., 1999. Rhodeus sericeus. In Banarescu, P. (ed.), The Freshwater Fishes of Europe, Vol. 5: Cyprinidae. AULA-Verlag, Wiesbaden: 1–32.Google Scholar
  14. Hughes, A. R., S. L. Williams, C. M. Duarte, K. L. Heck & M. Waycott, 2009. Associations of concern: declining seagrasses and threatened dependent species. Frontiers in Ecology and the Environment 7: 242–246.CrossRefGoogle Scholar
  15. Hunter, M. L., 1996. Fundamentals of Conservation Biology. Blackwell, Cambridge.Google Scholar
  16. Janse, J. H. & Pjtm Van Puijenbroek, 1998. Effects of eutrophication in drainage ditches. Environmental Pollution 102: 547–552.CrossRefGoogle Scholar
  17. Japan Meteorological Agency, 2010. Monthly data in an average year (1971–2000) at the Mihama Meteorological Station. http://www.jma.go.jp/jma/index.html. Accessed 20 Feb 2011 (in Japanese).
  18. Johnson, J. B. & K. S. Omland, 2004. Model selection in ecology and evolution. Trends in Ecology & Evolution 19: 101–108.CrossRefGoogle Scholar
  19. Katano, O., T. Nakamura, S. Abe, S. Yamamoto & Y. Baba, 2006. Comparison of fish communities between above- and below-dam sections of small streams; barrier effect to diadromous fishes. Journal of Fish Biology 68: 767–782.CrossRefGoogle Scholar
  20. Kitamura, J. I., 2007. Reproductive ecology and host utilization of four sympatric bitterling (Acheilognathinae, Cyprinidae) in a lowland reach of the Harai River in Mie, Japan. Environmental Biology of Fishes 78: 37–55.CrossRefGoogle Scholar
  21. Kitamura, J., 2008. Bitterling fishes (Cyprinidae: Acheilognathinae): current threats and conservation. Japanese Journal of Ichthyology 55: 139–144 (in Japanese).Google Scholar
  22. Kondo, T., 2008. Monograph of Unionoida in Japan (Mollusca: Bivalvia). Special Publication of the Malacological Society of Japan. Malacological Society of Japan, Tokyo.Google Scholar
  23. Kramer, D. L. & M. McClure, 1982. Aquatic surface respiration, a widespread adaptation to hypoxia in tropical fresh-water fishes. Environmental Biology of Fishes 7: 47–55.CrossRefGoogle Scholar
  24. Layman, C. A., J. P. Quattrochi, C. M. Peyer & J. E. Allgeier, 2007. Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecology Letters 10: 937–944.PubMedCrossRefGoogle Scholar
  25. Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Netherlands.Google Scholar
  26. McKinney, M. L., 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28: 495–516.CrossRefGoogle Scholar
  27. Meerhoff, M., N. Mazzeo, B. Moss & L. Rodriguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377–391.CrossRefGoogle Scholar
  28. Ministry of the Environment, Government of Japan, 2007. Red List of Freshwater Fish and Shellfish in Japan. http://www.biodic.go.jp/rdb/rdb_f.html. Accessed 20 Feb 2011 (in Japanese).
  29. Ministry of the Environment, Government of Japan, 2010. Japan Biodiversity Outlook. http://www.biodic.go.jp/biodiversity/jbo/jbo/reports/allin.pdf. Accessed 20 Feb 2011 (in Japanese).
  30. Miyake, T., J. Nakajima, N. Onikura, S. Ikemoto, K. Iguchi, A. Komaru & K. Kawamura, in press. The genetic status of two subspecies of Rhodeus atremius, an endangered bitterling in Japan. Conservation Genetics: doi: 10.1007/s10592-010-0146-0.
  31. Morosawa, T., in press. Hypoxia tolerance of three native and three alien species of bitterling inhabiting Lake Kasumigaura, Japan. Environmental Biology of Fishes. doi: 10.1007/s10641-011-9767-5.
  32. Morosawa, T. & M. Fujioka, 2007. The status of four native and three alien bitterling species (Acheilognathinae) in Lake Kasumigaura, Japan. Japanese Journal of Ichthyology 54: 129–137. (in Japanese).Google Scholar
  33. Moyle, P. B. & T. Light, 1996. Biological invasions of fresh water: empirical rules and assembly theory. Biological Conservation 78: 149–161.CrossRefGoogle Scholar
  34. Mueller, G. A., J. Carpenter & D. Thornbrugh, 2006. Bullfrog tadpole (Rana catesbeiana) and red swamp crayfish (Procambarus clarkii) predation on early life stages of endangered razorback sucker (Xyrauchen texanus). Southwestern Naturalist 51: 258–261.CrossRefGoogle Scholar
  35. Munday, P. L., 2004. Habitat loss, resource specialization, and extinction on coral reefs. Global Change Biology 10: 1642–1647.CrossRefGoogle Scholar
  36. Nakamura, M., 1969. Cyprinid Fishes of Japan – Studies on the Life History of Cyprinid Fishes of Japan. Research Institute of Natural Resources, Tokyo.Google Scholar
  37. O’Hara, R. B., 2009. How to make models add up – a primer on GLMMs. Annales Zoologici Fennici 46: 124–137.Google Scholar
  38. Palmer, T. M., M. L. Stanton, T. P. Young, J. R. Goheen, R. M. Pringle & R. Karban, 2008. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African Savanna. Science 319: 192–195.PubMedCrossRefGoogle Scholar
  39. Pelicice, F. M. & A. A. Agostinho, 2006. Feeding ecology of fishes associated with Egeria spp. patches in a tropical reservoir, Brazil. Ecology of Freshwater Fish 15: 10–19.CrossRefGoogle Scholar
  40. Przybylski, M., 1996. The diel feeding pattern of bitterling, Rhoedes seiceus amarus (Bloch) in the Wieprz-Krzna canal, Poland. Polskie Archiwum Hydrobiologii 43: 203–212.Google Scholar
  41. Przybylski, M. & G. Zieba, 2000. Microhabitat preference of European bitterling, Rhodeus Sericeus in the Drzewiczka River (Pilica basin). Polskie Archiwum Hydrobiologii 47: 99–114.Google Scholar
  42. R Core Development Team, 2010. R: a language and environment for statistical computing. http://cran.md.tsukuba.ac.jp/bin/windows/base/.
  43. Reichard, M. & P. Jurajda, 1999. Patterns of ontogenetic changes in relative growth in the precocial cyprinid, bitterling (Rhodeus sericeus). Netherlands Journal of Zoology 49: 111–124.Google Scholar
  44. Reichard, M., P. Jurajda, A. Simkova & I. Matejusova, 2002. Size-related habitat use by bitterling (Rhodeus sericeus) in a regulated lowland river. Ecology of Freshwater Fish 11: 112–122.CrossRefGoogle Scholar
  45. Roque, F. O., T. Siqueira, L. M. Bini, M. C. Ribeiro, L. R. Tambosi, G. Ciocheti & S. Trivinho-Strixino, 2010. Untangling associations between chironomid taxa in Neotropical streams using local and landscape filters. Freshwater Biology 55: 847–865.CrossRefGoogle Scholar
  46. Rosenberger, A. E. & L. J. Chapman, 1999. Hypoxic wetland tributaries as faunal refugia from an introduced predator. Ecology of Freshwater Fish 8: 22–34.CrossRefGoogle Scholar
  47. Rypel, A. L. & C. A. Layman, 2008. Degree of aquatic ecosystem fragmentation predicts population characteristics of gray snapper (Lutjanus griseus) in Caribbean tidal creeks. Canadian Journal of Fisheries and Aquatic Sciences 65: 335–339.CrossRefGoogle Scholar
  48. Sachs, J. L. & E. L. Simms, 2006. Pathways to mutualism breakdown. Trends in Ecology & Evolution 21: 585–592.CrossRefGoogle Scholar
  49. Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Biodiversity – global biodiversity scenarios for the year 2100. Science 287: 1770–1774.PubMedCrossRefGoogle Scholar
  50. Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, New York.Google Scholar
  51. Sheaves, M., R. Johnston & R. M. Connolly, 2010. Temporal dynamics of fish assemblages of natural and artificial tropical estuaries. Marine Ecology – Progress Series 410: 143–156.CrossRefGoogle Scholar
  52. Smith, C. & M. Reichard, 2005. Females solicit sneakers to improve fertilization success in the bitterling fish (Rhodeus sericeus). Proceedings of the Royal Society B – Biological Sciences 272: 1683–1688.CrossRefGoogle Scholar
  53. Smith, C., M. Reichard, P. Jurajda & M. Przybylski, 2004. The reproductive ecology of the European bitterling (Rhodeus sericeus). Journal of Zoology 262: 107–124.CrossRefGoogle Scholar
  54. Solomon, G., K. Matsushita, M. Shimizu & Y. Nose, 1982. The fluctuation and distribution of the population density and fish movement of rose bitterling in Shin Tone River. Bulletin of the Japanese Society of Scientific Fisheries 48: 1–9.Google Scholar
  55. Strayer, D. L., 2008. Freshwater Mussel Ecology. University of California press, London.Google Scholar
  56. Takamura, K., 2007. Performance as a fish predator of largemouth bass [Micropterus salmoides (Lacepede)] invading Japanese freshwaters: a review. Ecological Research 22: 940–946.CrossRefGoogle Scholar
  57. Teixeira-de Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.CrossRefGoogle Scholar
  58. Traveset, A. & D. M. Richardson, 2006. Biological invasions as disruptors of plant reproductive mutualisms. Trends in Ecology & Evolution 21: 208–216.CrossRefGoogle Scholar
  59. Vaughn, C. C. & D. E. Spooner, 2006. Unionid mussels influence macroinvertebrate assemblage structure in streams. Journal of the North American Benthological Society 25: 691–700.CrossRefGoogle Scholar
  60. Wang, Y., Y. Wang, P. Lu, F. Zhang & Y. Li, 2008. Diet composition of post-metamorphic bullfrogs (Rana catesbeiana) in the Zhoushan archipelago, Zhejiang Province, China. Frontiers of Biology in China 3: 219–226.CrossRefGoogle Scholar
  61. Wilcock, C. & R. Neiland, 2002. Pollination failure in plants: why it happens and when it matters. Trends in Plant Science 7: 270–277.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Akira Terui
    • 1
  • Shin-ichiro S. Matsuzaki
    • 2
  • Kohji Kodama
    • 3
  • Masamitsu Tada
    • 4
  • Izumi Washitani
    • 1
  1. 1.Department of Ecosystem Studies, Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyoJapan
  2. 2.National Institute for Environmental StudiesTsukuba-shiJapan
  3. 3.Fukui Prefectural Fisheries Experimental StationTsuruga-shiJapan
  4. 4.Fukui Prefectural Coastal Nature CenterMikatakaminaka-gunJapan

Personalised recommendations