Hydrobiologia

, Volume 674, Issue 1, pp 25–40 | Cite as

The effect of flooding on carbon and nutrient standing stocks of helophyte biomass in rewetted fens

  • Karsten Schulz
  • Tiemo Timmermann
  • Peggy Steffenhagen
  • Stefan Zerbe
  • Michael Succow
WETLAND RESTORATION

Abstract

Rewetting can strongly affect the matter balance of peatlands. Owing to evidence of increasing CH4 emissions and P mobilisation after rewetting, the effects of peatland restoration on climate, eutrophication risks and related controversies are discussed. Our study focuses on the role of helophytes in the carbon and nutrient balance of rewetted fen grasslands of NE Germany. We hypothesise that the helophytes Carex riparia, Glyceria maxima, Phalaris arundinacea, Phragmites australis and Typha latifolia differ in biomass production and nutrient standing stock according to site conditions and harvest time. We analysed the helophyte biomass three times a year and continuously measured water levels and quality. Biomass production, nutrient standing stock and litter accumulation were highly species specific and depended on nutrient availability, mean water levels and harvesting time. We conclude that helophytes store considerable amounts of carbon and temporarily improve the water quality by withdrawing high amounts of nutrients from the top soil during the growing season, and by reducing nutrient discharges. Restoring peatlands as effective nutrient and carbon sinks in the landscape should favour highly productive potentially peat-forming helophytes as Phragmites australis by establishing adequate water levels. If nutrients are to be removed from the degraded peatland, then management can combine the restoration of helophyte stands by rewetting with harvesting measures.

Keywords

Helophyte biomass Mire restoration Peatland rewetting Nutrient balance Phragmites australis Water level 

References

  1. Aerts, R. & H. De Caluwe, 1997. Nutritional and plant-mediated controls on leave litter decomposition of Carex species. Ecology 78: 244–260.Google Scholar
  2. Alexander, M., 1977. Introduction to Soil Microbiology, 2nd ed. Wiley, New York.Google Scholar
  3. Bayerische Landesanstalt für Bodenkultur und Pflanzenbau. 2000: Anbauversuch mit Rohrkolben (Typha spec. L.). 1–6.Google Scholar
  4. Benke, M. & J. Isselstein, 2001. Extensive Landwirtschaft auf Niedermoorgrünland – Probleme und Chancen. In R. Kratz, & J. Pfadenhauer (Hrsg.), Ökosystemmanagement für Niedermoore: Strategien und Verfahren zur Renaturierung. Ulmer, Stuttgart: 184–199.Google Scholar
  5. Bernard, J. M. & G. Hankinson, 1979. Seasonal changes in standing crop, primary production and nutrient levels in a Carex rostrata wetland. Oikos 32: 328–336.CrossRefGoogle Scholar
  6. Bernard, J. M., D. Solander & J. Kvet, 1988. Production and nutrient dynamics in Carex wetlands. Aquatic Botany 30: 125–147.CrossRefGoogle Scholar
  7. Brinson, M. M., A. E. Lugo & S. Brown, 1981. Primary productivity, decomposition and consumer activity in fresh water wetlands. Annual Review of Ecology and Systematics 12: 123–163.CrossRefGoogle Scholar
  8. Brix, H., B. K. Sorell & B. Lorenzen, 2001. Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany 69: 313–324.CrossRefGoogle Scholar
  9. Chimner, R. A., D. J. Cooper & W. J. Patron, 2002. Modelling carbon accumulation in Rocky Mountain Fens. Wetlands 22: 100–110.CrossRefGoogle Scholar
  10. Coops, H., F. W. B. Van den Brink & G. Van der Velde, 1996. Growth and morphological responses of four helophyte species in an experimental water-depth gradient. Aquatic Botany 54: 11–24.CrossRefGoogle Scholar
  11. Dickinson, C. H., 1983. Micro-organisms in peatland. In Gore, A. J. P. (ed.), Mires: Swamp, Bog, Fen and Moor-ecosystems of the World. Elsevier, Amsterdam: 225–245.Google Scholar
  12. Dierberg, F. E., T. A. de Busk, S. D. Jackson, M. J. Chimney & K. Pietro, 2002. Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading. Water Research 36: 1409–1422.PubMedCrossRefGoogle Scholar
  13. Dvorak, J. & E. Liskova, 2002. Decomposition of Glyceria maxima in the littoral zone. In Kvet, J., J. Jenik & L. Soukupova (eds), Freshwater Wetlands and Their Sustainable Future. Man and the Biosphere Series, Vol. 28. Parthenon Publishing, UNESCO, Paris: 211–229.Google Scholar
  14. Dykyjova, D., 1978. Nutrient uptake by littoral communities of helophytes. In Dykyjova, D. & J. Kvet (eds), Pond Littoral Ecosystems. Structure and Functioning. Ecological Studies, Vol. 28. Springer, Berlin: 257–291.Google Scholar
  15. Dykyjova, D. & J. Kvet, 1982. Mineral nutrient economy in wetlands of the Trebon Basin Biosphere Reserve, Czechoslovakia. In Gopal, B., R. E. Turner, R. G. Wetzel & D. F. Whigham (eds), Wetlands: ecology and Management. Proceedings of the 1st International Wetlands Conference; New Delhi 1980. National Institute of Ecology and Institute of Science Publications, New Dehli: 335–366.Google Scholar
  16. Fresenius, W. & W. Schneider, 1965. Zur Bestimmung von Eisen (II) und Gesamteisen mit 2,2-Dipyridyl in Mineralwässern. Reduktion von Eisen (III) mit Ascorbinsäure. Fresenius. Zeitschrift für Analytische Chemie 209: 340–341.CrossRefGoogle Scholar
  17. Graneli, W., 1989. Influence of standing litter on shoot production in reed, Phragmites australis (Cav.) Trin. Ex Steudel. Aquatic Botany 35: 99–109.CrossRefGoogle Scholar
  18. Gumbricht, T., 1993. Nutrient removal processes in freshwater submersed macrophytes systems. Ecological Engineering 2: 1–30.CrossRefGoogle Scholar
  19. Güsewell, S. & W. Koerselman, 2002. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics 5: 37–61.CrossRefGoogle Scholar
  20. Guthruf, K., C. Zenger & R. Brändle, 1993. The habitat dependent productivity of reed (Phragmites australis) and its significance. In Ostendorp, W. & P. Krumscheid-Plankert (Hrsg.), Seeuferzerstörung und Seeuferrenaturierung in Mitteleuropa. Gustav Fischer Verlag, Stuttgart: 1–7.Google Scholar
  21. Hartmann, M., 1999. To the Roots of Peat Formation – Production and Decomposition Processes in a Fen. Dissertation. Ernst-Moritz-Arndt University Greifswald.Google Scholar
  22. Hejny, S., 1960. Ökologische Charakteristik der Wasser- und Sumpfpflanzen in den Slowakischen Tiefebenen (Donau- und Theisgebiet). Verlag der Slowakischen Akademie der Wissenschaften, Bratislava.Google Scholar
  23. Hejny, S. & S. Husak, 1978. General ecology and inventarization of biotic communities. Higher plant communities. In Dykyjova, D. & J. Kvet (eds), Pond Littoral Ecosystems. Structure and Functioning. Ecological Studies, Vol. 28. Springer, Berlin: 23–64.Google Scholar
  24. Hejny, S., J. Kvet & D. Dykyjova, 1985. Survey of biomass and net production of higher plant communities in fishponds. Folia Geobotanica 16: 73–94.Google Scholar
  25. Hoffmann, C. C. & A. Baatrup-Pedersen, 2007. Re-establishing freshwater wetlands in Denmark. Ecological Engineering 30: 157–166.CrossRefGoogle Scholar
  26. Husak, S. & S. Hejny, 1973. Marginal plant communities of the Nesty fishpond (South Moravia). Polish Archives of Hydrobiologia 20: 461–467.Google Scholar
  27. Idalia, Y., B. de Zozaya & J. J. Neiff, 1990. Decomposition and colonization by invertebrates of Typha latifolia L. Litter in Chaco Cattail Swamp (Argentinia). Aquatic Botany 40: 185–193.Google Scholar
  28. Jasinskas, A., A. Zaltauskas & A. Kryzerviciene, 2008. The investigation of growing and tall perennial grasses as energy crops. Biomass and Bioenergy 32: 981–987.CrossRefGoogle Scholar
  29. Jensen, K., 1998. Species composition of soil seed bank and seed rain of abandoned wet meadows and their relation to aboveground biomass. Flora 193: 345–359.Google Scholar
  30. Joosten, H. & D. Clark, 2001. Wise Use Mires and Peatlands. Background and Principles Including a Framework for Decision Making. International Mire Conservation Group and International Peat Society, Totness.Google Scholar
  31. Käding, H., 1994. Ökologische Bewirtschaftung von Niedermoorgrünland unter Berücksichtigung der Nährstoffbilanzen. Archives of Nature Conservation and Landscape Research 33: 187–194.Google Scholar
  32. Kao, I. T., J. E. Titus & W. X. Zhu, 2003. Differential nitrogen and phosphorus retention by five wetland species. Wetlands 23: 979–987.CrossRefGoogle Scholar
  33. Koerselman, W. & A. F. M. Meuleman, 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Applied Ecology 33: 1441–1450.CrossRefGoogle Scholar
  34. Kovacs, M., 1976. Die Bedeutung der Balaton-Uferzone für den Umweltschutz am See. Acta Botanica 22: 85–105.Google Scholar
  35. Kowatsch, A., 2007. Moorschutzkonzepte und -programme in Deutschland. Ein historischer und aktueller Überblick. Naturschutz und Landschaftsplanung 39: 197–204.Google Scholar
  36. Kühl, H. & J. G. Kohl, 1992. Nitrogen accumulation, productivity and stability of reed stands (Phragmites australis (Cav.) Trin. Ex Steudel) at different lakes and sites of the lake districts Uckermark and Mark Brandenburg. Internationale Revue der gesamten Hydrobiologie und Hydrographie 77: 85–107.CrossRefGoogle Scholar
  37. Kühl, H. & J. G. Kohl, 1993. Seasonal nutrient dynamics in reed beds (Phragmites australis (Cav.) Trin. Ex. Steudel) in relation to productivity. Hydrobiologia 251: 1–12.CrossRefGoogle Scholar
  38. Kvet, J., 1984. Differentiation of summer temperatures in fish-pond vegetation. Preslia 56: 213–227.Google Scholar
  39. Kvet, J. & I. Ostry, 1988. Mineral nutrient accumulation in the principal plant communities in the Rozmberk fishpond littoral. In Hroudova, Z. (ed.), Littoral Vegetation of the Rozmbrk Fishpond and Its Mineral Nutrient Economy, Studie CSAV, 88/9. Academia, Praha: 95–104.Google Scholar
  40. Kvet, J., M. Tetter, F. Klimes & K. Suchy, 1996. Grassland productivity as a basis for agricultural use pf the Luznice Floodplain. In Prach, K., J. Jenik & A. R. G. Lange (eds), Floodplain Ecology and Management. SPB Academic Publishing, Amsterdam: 245–249.Google Scholar
  41. Kvet, J., J. Lukavska & M. Tetter, 2002. Biomass and net primary production in graminoid vegetation. In Kvet, J., J. Jenik & L. Soukupova (eds), Freshwater Wetlands and Their Sustainable Future. Man and the Biosphere Series, Vol. 28. Parthenon Publishing, UNESCO, Paris: 293–304.Google Scholar
  42. Lee, B. A., J. K. Gi & G. K. Jae, 2007. The optimal environmental ranges for wetland plants: Scirpus tabernaemontani and Typha latifolia. Journal of Ecology and Field Biology 30: 151–159.CrossRefGoogle Scholar
  43. Mason, C. F. & R. J. Bryant, 1975. Production, nutrient content and decomposition of Phragmites communis Trin. and Typha angustifolia L. Ecology 63: 71–95.CrossRefGoogle Scholar
  44. Michaelis, D., 2002. Die spät- und nacheiszeitliche Entwicklung der natürlichen Vegetation von Durchströmungsmooren in Mecklenburg-Vorpommern am Beispiel der Recknitz. Dissertationes Botanicae 365: Cramer, Berlin-Stuttgart.Google Scholar
  45. Murphy, J. & J. P. Riley, 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  46. Ondok, J. P., 1973. Avarage shoot biomass in monospecific helophyte stands of the Opatovicky fishpond. In Hejny, S. (ed.), Ecosystem Study on Wetland Biome in Czechoslovakia. CSAV, Trebon: 83–85.Google Scholar
  47. Ostendorp, W., 1997. Auswirkung von Wintermahd auf den Nährstoffhaushalt von Seeuferröhrichten des Bodensee-Untersees. Verhandlungen der Gesellschaft für Ökologie 27: 227–234.Google Scholar
  48. Oswit, J., R. Pacowski & S. Zurek, 1976. Characteristics of more important peat species in Poland. In Peatlands and Their utilization in Poland, V. International Peat Congress Poznan. NOT, Warsaw: 51–60.Google Scholar
  49. Päivänen, J. & H. Vasander, 1994. Carbon balance in mire ecosystems. World Resource Review 6: 102–111.Google Scholar
  50. Patrick, H., 1990. Microbial reactions of nitrogen and phosphorus in wetlands. The Utrecht Plant Ecology News Report 11: 52–63.Google Scholar
  51. Pokorny, J., J. Kvet & K. Cerovska, 2002. The role of wetlands in energy and material flows in the landscape. In Kvet, J., J. Jenik & L. Soukupova (eds), Freshwater Wetlands and Their Sustainable Future. Man and Biosphere Series, Vol. 28. Parthenon Publishing Group, Boca Raton: 445–462.Google Scholar
  52. Polunin, N. V. C., 1982. Processes in the decay of reed (Phragmites australis) litter in Freshwater. In Gopal, B., R. E. Turner, R. G. Wetzel & D. F. Whigham (eds), Wetlands: ecology and Management, Proceedings of the 1st International Wetlands Conference; New Delhi 1980. National Institute of Ecology and Institute of Science Publications, New Dehli: 293–304.Google Scholar
  53. Prentki, R. T., T. D. Gustafson & M. S. Adams, 1978. Nutrient movements in lakeshore marshes. In Good, R. E., D. F. Whigham & R. L. Simpson (eds), Freshwater Wetlands: ecological Processes and Management Potential. Academic Press, New York: 169–195.Google Scholar
  54. Richardson, C. J. & P. E. Marshall, 1986. Processes controlling movement, storage, and export of phosphorus in a fen peatland. Ecological Monographs 56: 279–302.CrossRefGoogle Scholar
  55. Richert, M., O. Dietrich, D. Koppisch & S. Roth, 2000. The influence of rewetting on vegetation development and decomposition in a degraded fen. Restoration Ecology 8: 186–195.CrossRefGoogle Scholar
  56. Rolletschek, H., A. Rolletschek, H. Kühl & J. G. Kohl, 1999. Clone specific differences in a Phragmites australis stand II. Seasonal development of morphological and physiological characteristics at the natural site and after transplantation. Aquatic Botany 64: 247–260.CrossRefGoogle Scholar
  57. Roth, S., T. Seeger, P. Poschlod, J. Pfadenhauer & M. Succow, 1999. Establishment of helophytes in the course of fen restoration. Applied Vegetation Science 2: 131–136.CrossRefGoogle Scholar
  58. Rowell, D. L., 1997. Bodenkunde–Untersuchungsmethoden und ihre Anwendung. Springer, Berlin.Google Scholar
  59. Schieferstein, B. B., 1999. Ecological and molecularbiological investigations on reed (Phragmites australis (Cav.) Trin. Ex Steud.) in Lakes of Northern Germany – an overview. Limnologica 29: 28–35.Google Scholar
  60. Schrautzer, J., 2001. Niedermoore Schleswig-Holsteins: Charakterisierung und Beurteilung ihrer Funktion im Landschaftswasserhaushalt. Thesis, Christian-Albrechts-University of Kiel.Google Scholar
  61. Steffenhagen, P., T. Timmermann, K. Schulz & S. Zerbe, 2008. Biomasseproduktion sowie Kohlenstoff- und Nährstoffspeicherung durch Sumpfpflanzen (Helophyten) und Wasserpflanzen (Hydrophyten). In Gelbrecht, J., D. Zak & J. Augustin (Hrsg.), Phosphor- und Kohlenstoff-Dynamik und Vegetationsentwicklung in wiedervernässten Mooren des Peenetals in Mecklenburg-Vorpommern. Berichte des IGB 26/2008, Leibniz Institut für Gewässerökologie und Binnenfischerei Berlin: 145–154.Google Scholar
  62. Succow, M. & H. Joosten, 2001. Landschaftsökologische Moorkunde. Schweitzerbart, Stuttgart.Google Scholar
  63. Sunblad, K. & H. B. Wittgren, 1989. Glyceria maxima for wastewater nutrient removal and forage production. Biological Wastes 27: 29–42.CrossRefGoogle Scholar
  64. Therburg, A. & B. Ruthsatz, 1989. Zum Nährstoffgehalt von Schnabel- und Blasenseggenrieden und seiner Aussagekraft für den Trophiegrad von Feuchtestandorten in der Eifel. Beiträge Landespflege Rheinland Pfalz 12: 49–76.Google Scholar
  65. Timmermann, T., K. Margoczi, G. Takacs & K. Vegelin, 2006. Restoration of peat-forming vegetation by rewetting species-poor fen grasslands. Applied Vegetation Science 9: 241–250.CrossRefGoogle Scholar
  66. Timmermann, T., H. Joosten & M. Succow, 2009. Restaurierung von Mooren. In Zerbe, S. & G. Wiegleb (Hrsg.), Renaturierung von Ökosystemen in Mitteleuropa. Spektrum, Heidelberg: 55–93.Google Scholar
  67. Tupacz, E. G. & F. P. Day, 1990. Decomposition of roots in a seasonally flooded swamp ecosystem. Aquatic Botany 37: 199–214.CrossRefGoogle Scholar
  68. Ulehlova, B., 1978. Decomposition processes in the fishpond littoral. In Dykyjova, D. & J. Kvet (eds), Pond Littoral Ecosystems. Structure and Functioning. Ecological Studies, Vol. 28. Springer, Berlin: 341–353.Google Scholar
  69. Ulehlova, B., 1998. The role of decomposers in wetlands. In Westlake, D. F., J. Kvet & A. Szcepanski (eds), The Production Ecology of Wetlands. Cambridge University Press, Cambridge: 192–210.Google Scholar
  70. Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment 380: 48–65.PubMedCrossRefGoogle Scholar
  71. Vymazal, J. & L. Kropfelova, 2005. Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecological Engineering 25: 606–621.CrossRefGoogle Scholar
  72. Wheeler, B. D. & S. C. Shaw, 1991. Aboveground crop mass and species richness of the principal types of herbaceous rich fen vegetation of lowland England and Wales. Ecology 79: 285–301.CrossRefGoogle Scholar
  73. Zak, D. & J. Gelbrecht, 2007. The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany). Biogeochemistry 85: 141–151.CrossRefGoogle Scholar
  74. Zak, D., J. Gelbrecht, C. Wagner, B. Payer & J. Augustin, 2010. Phosphorus mobilization in rewetted fens: the effect of altered peat properties and implications for their restoration. Ecological Applications. doi:10.1890/08–2053.

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Karsten Schulz
    • 1
  • Tiemo Timmermann
    • 1
  • Peggy Steffenhagen
    • 2
  • Stefan Zerbe
    • 3
  • Michael Succow
    • 4
  1. 1.Institute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
  2. 2.LUP—Luftbild Umwelt Planung GmbHPotsdamGermany
  3. 3.Faculty of Science and TechnologyFree University of Bozen-BolzanoBolzanoItaly
  4. 4.Michael Succow FoundationInstitute of Botany and Landscape EcologyGreifswaldGermany

Personalised recommendations