, 672:69 | Cite as

Observed dissolved and particulate nitrogen concentrations in a mini flume

  • Simon J. Ussher
  • Andrew J. Manning
  • Alan D. Tappin
  • Mark F. FitzsimonsEmail author
Thames Estuary


Previous measurements of the benthic nitrogen (N) flux from resuspended estuarine particles in the Thames Estuary appeared to underestimate benthic inputs. This study attempted to address experimental limitations by using a mini-annular flume. The flume has a 45 l capacity and was prepared in order to facilitate trace chemical analysis of N. Sediment (S1) and suspended particulate material (SPM; S2) were collected from the Tamar Estuary, UK, and added to prepared, low-N, freshwater and seawater solutions to give a final particle concentration of 500 mg l−1. Two tidal cycles were simulated and SPM and total dissolved N (TDN) were measured at a range of turbulent shear stresses (0.06–0.9 Pa) representative of the sampling sites. A large increase in TDN concentration was measured after particle addition and initial mixing, due to release of loosely bound particulate N (PN). The TDN concentration increased as the experiment progressed (up to 12 μM), but did not appear to be systematically linked to either salinity or SPM concentration. The flume system and experimental protocol provided reproducible physical data and low detection limits for TDN, which demonstrates its potential for studying relationships between estuarine particle transport and macronutrient cycles.


Nitrogen Resuspension Flume Thames Tamar Estuary 



We are grateful to Dr Mathias Ricking, Free University of Berlin, for the SPM sampler. This study was supported by two awards (Royal Society of Chemistry Research Fund and Seale Hayne Educational Trust) to MFF, and a University of Plymouth Research and Innovation Fellowship to AJM. The comments of two referees were very helpful for improvement of the manuscript, and are acknowledged.


  1. Amos, C. L., T. F. Sutherland & J. Zevenhuizen, 1996. The stability of sublittoral, fine-grained sediments in a subarctic estuary. Sedimentology 43: 1–19.CrossRefGoogle Scholar
  2. Badr, E. S. A., E. P. Achterberg, A. D. Tappin, S. J. Hill & C. B. Braungardt, 2003. Determination of dissolved organic nitrogen in natural waters using high-temperature catalytic oxidation. Trac-Trends in Analytical Chemistry 22: 819–827.CrossRefGoogle Scholar
  3. Bale, A. J., J. Widdows, C. B. Harris & J. A. Stephens, 2006. Measurements of the critical erosion threshold of surface sediments along the Tamar Estuary using a mini-annular flume. Continental Shelf Research 26: 1206–1216.CrossRefGoogle Scholar
  4. Duan, S. & T. S. Bianchi, 2007. Particulate and dissolved amino acids in the lower Mississippi and Pearl Rivers (USA). Marine Chemistry 107: 214–229.CrossRefGoogle Scholar
  5. Dyer, K. R., A. J. Bale, M. C. Christie, N. Feates, S. Jones & A. J. Manning, 2002a. The turbidity maximum in a mesotidal estuary, the Tamar Estuary, UK. Part II: the floc properties. In Winterwerp, J. C. & C. Kranenburg (eds), Fine Sediment Dynamics in the Marine Environment. Proceedings in Marine Science. Elsevier, Amsterdam: 219–232.CrossRefGoogle Scholar
  6. Dyer, K. R., A. J. Bale, M. C. Christie, N. Feates, S. Jones & A. J. Manning, 2002b. The turbidity maximum in a mesotidal estuary, the Tamar Estuary, UK. Part I: dynamics of suspended sediment. In Winterwerp, J. C. & C. Kranenburg (eds), Fine Sediment Dynamics in the Marine Environment. Proceedings in Marine Science. Elsevier, Amsterdam: 203–218.CrossRefGoogle Scholar
  7. Fitzsimons, M. F., G. E. Millward, D. M. Revitt & M. D. Dawit, 2006. Desorption kinetics of ammonium and methylamines from estuarine sediments: Consequences for the cycling of nitrogen. Marine Chemistry 101: 12–26.CrossRefGoogle Scholar
  8. Galloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. C. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger & M. A. Sutton, 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320: 889–892.PubMedCrossRefGoogle Scholar
  9. Gratiot, N. & A. J. Manning, 2008. Flocculation processes in concentrated benthic suspension layer (CBS) using a laboratory diffusive turbulent grid tank. In Kudusa, T., H. Yamanishi, J. Spearman & J. Z. Gailani (eds), Sediment and Ecohydraulics. Proceedings in Marine Science. Elsevier, Amsterdam: 53–68.CrossRefGoogle Scholar
  10. Gruber, N. & J. N. Galloway, 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451: 293–296.PubMedCrossRefGoogle Scholar
  11. Hecky, R. E. & P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography 33: 796–822.CrossRefGoogle Scholar
  12. Henrichs, S. M., 1995. Sedimentary organic-matter preservation: an assessment and speculative synthesis—a comment. Marine Chemistry 49: 127–136.CrossRefGoogle Scholar
  13. Hoagland, P., D. M. Anderson, Y. Kaoru & A. W. White, 2002. The economic effects of harmful algal blooms in the United States: Estimates, assessment issues, and information needs. Estuaries 25: 819–837.CrossRefGoogle Scholar
  14. Komada, T. & C. E. Reimers, 2001. Resuspension-induced partitioning of organic carbon between solid and solution phases from a river-ocean transition. Marine Chemistry 76: 155–174.CrossRefGoogle Scholar
  15. Lin, Y. J., Z. L. He, Y. G. Yang, P. J. Stoffella, E. J. Phlips & C. A. Powell, 2008. Nitrogen versus phosphorus limitation of phytoplankton growth in Ten Mile Creek, Florida, USA. Hydrobiologia 605: 247–258.CrossRefGoogle Scholar
  16. Manning, A. J., 2004. The observed effects of turbulence on estuarine flocculation. Journal of Coastal Research 41: 90–104.Google Scholar
  17. Manning, A. J. & S. J. Bass, 2006. Variability in cohesive sediment settling fluxes: Observations under different estuarine tidal conditions. Marine Geology 235: 177–192.CrossRefGoogle Scholar
  18. Manning, A. J. & K. R. Dyer, 1999. A laboratory examination of floc characteristics with regard to turbulent shearing. Marine Geology 160: 147–170.CrossRefGoogle Scholar
  19. Martino, M., A. Turner & M. Nimmo, 2004. Distribution, speciation and particle-water interactions of nickel in the Mersey Estuary, UK. Marine Chemistry 88: 161–177.CrossRefGoogle Scholar
  20. Morel, F. M. M., J. G. Rueter, D. M. Anderson & R. R. L. Guillard, 1979. AQUIL—chemically defined phytoplankton culture medium for trace-metal studies. Journal of Phycology 15: 135–141.CrossRefGoogle Scholar
  21. Morin, J. & J. W. Morse, 1999. Ammonium release from resuspended sediments in the Laguna Madre estuary. Marine Chemistry 65: 97–110.CrossRefGoogle Scholar
  22. Morris, A. W., A. J. Bale & R. J. M. Howland, 1982. Chemical variability in the Tamar Estuary, Southwest England. Estuarine and Coastal Shelf Science 14: 649–661.CrossRefGoogle Scholar
  23. Pretty, J. N., C. F. Mason, D. B. Nedwell, R. E. Hine, S. Leaf & R. Dils, 2003. Environmental costs of freshwater eutrophication in England and Wales. Environmental Science & Technology 37: 201–208.CrossRefGoogle Scholar
  24. Saalfield, S. L., J. D. Wnuk, M. M. Murray & F. M. Dunnivant, 2007. A comparison of two techniques for studying sediment desorption kinetics of hydrophobic pollutants. Chemosphere 66: 384–389.PubMedCrossRefGoogle Scholar
  25. Schoellhamer, D. H., 1996. Anthropogenic sediment resuspension mechanisms in a shallow microtidal estuary. Estuarine Coastal and Shelf Science 43: 533–548.CrossRefGoogle Scholar
  26. Schulze, T., M. Ricking, C. Schroter-Kermani, A. Korner, H. D. Denner, K. Weinfurtner, A. Winkler & A. Pekdeger, 2007. The German Environmental Specimen Bank—sampling, processing, and archiving sediment and suspended particulate matter. Journal of Soils and Sediments 7: 361–367.CrossRefGoogle Scholar
  27. Stepanauskas, R., N. O. G. Jorgensen, O. R. Eigaard, A. Zvikas, L. J. Tranvik & L. Leonardson, 2002. Summer inputs of riverine nutrients to the Baltic Sea: bioavailability and eutrophication relevance. Ecological Monographs 72: 579–597.CrossRefGoogle Scholar
  28. Tappin, A. D., 2002. An examination of the fluxes of nitrogen and phosphorus in temperate and tropical estuaries: current estimates and uncertainties. Estuarine Coastal and Shelf Science 55: 885–901.CrossRefGoogle Scholar
  29. Tappin, A. D., G. E. Millward & M. F. Fitzsimons, 2007. Distributions, cycling and recovery of amino acids in estuarine waters and sediments. Environmental Chemistry Letters 5: 161–167.CrossRefGoogle Scholar
  30. Turner, A., M. Nimmo & K. A. Thuresson, 1998. Speciation and sorptive behaviour of nickel in an organic-rich estuary (Beaulieu, UK). Marine Chemistry 63: 105–118.CrossRefGoogle Scholar
  31. Uncles, R. J., A. J. Bale, J. A. Stephens, P. E. Frickers & C. Harris, 2010. Observations of floc sizes in a muddy estuary. Estuarine Coastal and Shelf Science 87: 186–196.CrossRefGoogle Scholar
  32. UNEP (United Nations Environment Programme), 2004. 8th Special Session of the Governing Council/Global Ministerial Environment Forum, Jeju, Republic of Korea.Google Scholar
  33. Wainright, S. C., 1987. Stimulation of heterotrophic microplankton production by resuspended marine sediments. Science 238: 1710–1712.PubMedCrossRefGoogle Scholar
  34. Widdows, J., A. Blauw, C. H. R. Heip, P. M. J. Herman, C. H. Lucas, J. J. Middelburg, S. Schmidt, M. D. Brinsley, F. Twisk & H. Verbeek, 2004. Role of physical and biological processes in sediment dynamics of a tidal flat in Westerschelde Estuary, SW Netherlands. Marine Ecology-Progress Series 274: 41–56.CrossRefGoogle Scholar
  35. Xu, H., H. W. Paerl, B. Q. Qin, G. W. Zhu & G. Gao, 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography 55: 420–432.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Simon J. Ussher
    • 1
  • Andrew J. Manning
    • 2
    • 3
  • Alan D. Tappin
    • 1
  • Mark F. Fitzsimons
    • 1
    Email author
  1. 1.Biogeochemistry Research Centre, School of Geography, Earth and Environmental SciencesUniversity of PlymouthPlymouthUK
  2. 2.Marine Physics Research Group, School of Marine Science and EngineeringUniversity of PlymouthPlymouthUK
  3. 3.HR Wallingford Ltd., Howbery ParkWallingford, OxfordshireUK

Personalised recommendations