Advertisement

Hydrobiologia

, Volume 673, Issue 1, pp 41–52 | Cite as

Detection of morphometric differentiation between isolated up- and downstream populations of Siah Mahi (Capoeta capoeta gracilis) (Pisces: Cyprinidae) in the Tajan River (Iran)

  • Hossein AnvariFarEmail author
  • Alireza Khyabani
  • Hamid Farahmand
  • Saber Vatandoust
  • Hassan AnvariFar
  • Shrinivas Jahageerdar
Primary Research Paper

Abstract

It has been postulated that the building of the Shahid-Rajaei dam on the Tajan River around 1995 has lead to the morphological divergence of Siah Mahi Capotes capoeta gracilis (Pisces) of up- and downstream populations due to the isolation. A 13-landmark morphometric truss network system was used to investigate the hypothesis. Univariate analysis of variance showed significant differences between the means of the two groups for 45 standardized morphometric measurements out of 78 characters studied. In linear discriminant function analysis (DFA), the overall assignment of individuals into their original groups was 87.6%. The proportion of individuals correctly classified into their original groups was 90.3% for upstream and 83.7% for downstream population. The principal component analysis (PCA) scatter plot of individual component scores between PC1 and PC2 showed 121 fish specimens grouped into two areas but with a relativity high degree of overlap between two populations. Clustering analysis based on Euclidean square distances among groups of centroids using an UPGMA resulted into two main clusters indicating two populations of C. c. gracilis. The present study indicated the presence of two morphologically different populations of C. c. gracilis in the Tajan River across the Shahid-Rajaei dam, probably due to their limited downstream dispersal and the elimination of upstream migration altogether, due the construction of the dam.

Keywords

Siah Mahi Dam Morphometric differentiation Truss network system Tajan River 

Notes

Acknowledgments

We express our sincere thanks to Kia Amani, Majid Kargar and Sajad Pishnamaz-zade for their help in specimen collection, and thank Roghaieh Gholampor and Atena Porsohrab for helping us in fixing and taking the photographs of the fishes. We also thank Habib-Alla AnvariFar for the financial support. Special thanks to Sajad Rashidi-Monfared and Ahmad Nori for editing the manuscript. We dedicate this article to Don McAllister for his outstanding research about effects of dams on fishes.

References

  1. Abdoli, A., P. Rasooli & H. Mostafavi, 2008. Length–weight relationships of Capoeta capoeta capoeta (Gueldenstaedt, 1772) in the Gorganrud River, south Caspian Basin. Journal of Applied Ichthyology 24: 96–98.CrossRefGoogle Scholar
  2. Akbarzadeh, A., H. Farahmand, A. A. Shabani, M. Karami, M. Kaboli, K. Abbasi & G. R. Rafiee, 2009. Morphological variation of the pikeperch Sander lucioperca (L.) in the southern Caspian Sea, using a truss system. Journal of Applied Ichthyology 25: 576–582.CrossRefGoogle Scholar
  3. Amanov, A. A., 1970. Morphology and ecology of the Samarkand khramulya [Varicorhinus capoeta heratensis (Kessl.)] of the Surkhan Dariya River basin. Journal of Ichthyology 10: 475–481.Google Scholar
  4. Berg, L. S., 1949. Freshwater Fishes of USSR and Adjacent Countries, 4th edn. Akademia Neuk USSR, Moscow & Leningrad, Part 3 (in Russian, English translation published by Isreal Program for Scientific Translations, Jerusalem, 1968).Google Scholar
  5. Bookstein, F. L., 1991. Morphometric Tools for Landmark Data. Cambridge University Press, Cambridge, UK: 435 pp.Google Scholar
  6. Bookstein F. L., Chernoff, B., Elder, R. L., Humphries, J. M. Jr., Smith, G. R., Strauss, R. E. 1985. Morphometrics in evolutionary biology. The Academy of Natural Sciences Philadelphia. Special Publication 15.Google Scholar
  7. Cardin, S. X. & K. D. Friedland, 1999. The utility of image processing techniques for morphometric analysis and stock identification. Fisheries Research 43: 129–139.CrossRefGoogle Scholar
  8. Carvalho, G. R. & L. Hauser, 1994. Molecular genetics and the stock concept in fisheries. Review in Fish Biology and Fisheries 4: 326–350.CrossRefGoogle Scholar
  9. Cattell, R. B., 1966. The scree test for the number of factors, multivariate. Behavioral Research 1: 245–276.CrossRefGoogle Scholar
  10. Cavalcanti, M. J., Monteiro, L. R., Lopes, P. R. D. 1999. Landmark-based Morphometric Analysis in Selected Species of Serranid Fishes (Perciformes: Teleostei). Zoological Studies 38: 287–294.Google Scholar
  11. Coad, B. W., 2008. Freshwater Fishes of Iran. Available at http://www.briancoad.com (accessed on 17 May 2010).
  12. Craig, J. F., 2001. Large Dams and Freshwater Fish Biodiversity. World Commission on Dams, Prepared for Thematic Review II.1: Dams, Ecosystem Functions and Environmental Restoration: 59 pp.Google Scholar
  13. Dakin, E. E., B. A. Porter, B. J. Freeman & J. M. Long, 2007. Genetic Integrity of An Isolated Population of Shoal Bass (Micropterus cataractae) in the upper Chattahoochee River basin. Natural Resource Technical Report NPS/NRWRD/NRTR—2007/366. National Park Service. Water Resources Division, Fort Collins, CO.Google Scholar
  14. Elliott, N. G., K. Haskard & J. A. Koslow, 1995. Morphometric analysis of orange roughly (Hoplostethus atianticus) off the continental slope of Southern Australia. Journal of Fish Biology 46: 202–220.CrossRefGoogle Scholar
  15. Esguicero, A. L. H. & S. A. Arcifa, 2010. Fragmentation of a Neotropical migratory fish population by a century-old dam. Hydrobiologia 638: 41–53.CrossRefGoogle Scholar
  16. Field, A. 2000. Discovering Statistics Using SPSS for Windows. Sage, LondonGoogle Scholar
  17. Holcík, J., 1999. The Impact of Stream Regulations upon the Fish Fauna and Measures to Prevent it, p. 13. Abstract in: Stomboudi, M. T., M. Kottelat & R. Barbieri (eds), Workshop on Mediterranean Stream Fish Ecology and Conservation, Rhodes, Hellas, 1–3 November 1999.Google Scholar
  18. Horvath, E. & M. A. T. Municio, 1998. Impacts of dams on fish fauna/feasibility of migration measures. 2nd International PhD Symposium in Civil Engineering, Budapest, 1–6.Google Scholar
  19. Ihssen, P. E., D. O. Evans, W. J. Christie, J. A. Rechahn & D. L. DesJardine, 1981. Life history, morphology, and electrophoretic characteristics of five allopatric stocks of Lake Whitefish (Coregonus clupeaformis) in the Great Lakes region. Canadian Journal of Fisheries and Aquatic Sciences 38: 1790–1807.CrossRefGoogle Scholar
  20. Jager, H. I., J. A. Chandler, K. B. Lepla & W. V. Winkle, 2001. A theoretical study of river fragmentation by dams and its effect on white sturgeon populations. Environmental Biology of Fishes 60: 347–361.CrossRefGoogle Scholar
  21. Johnson, D. H., 1981. How to measure habitat: a statistical perspective. U.S. Forest Service General Technical Report RM 87: 53–57.Google Scholar
  22. Kaiser, H. F. 1974. An Index of Factorial Simplicity. Psychometrika 39: 31–36Google Scholar
  23. Karakousis, Y., C. Triantaphyllidis & P. S. Economidis, 1991. Morphological variability among seven populations of brown trout, Salmon trutta L., in Greece. Journal of Fish Biology 38: 807–817.CrossRefGoogle Scholar
  24. Kiabi, B. H., A. Abdoli & M. Naderi, 1999. Status of the fish fauna in the South Caspian Basin of Iran. Zoology in the Middle East 18: 57–65.Google Scholar
  25. Kocovsky, P. M., J. V. Adams & C. R. Bronte, 2009. The effect of sample size on the stability of principal component analysis of truss-based fish morphometrics. Transactions of the American Fisheries Society 138: 487–496.CrossRefGoogle Scholar
  26. McAllister, D. E., J. F. Craig, N. Davidson, S. Delany & M. Seddon, 2001a. Biodiversity Impacts of Large Dams. Background Paper No. 1, Prepared for IUCN/UNEP/WCD: 47 pp.Google Scholar
  27. McAllister, D. E., J. F. Craig, N. Davidson, S. Delany and M. Seddon, 2001b. Biodiversity Impacts of Large Dams: Dams, ecosystem functions and environmental restoration. On behalf of IUCN – The World Conservation Union, 66 pp.Google Scholar
  28. McGarigal, K., S. Cushman & S. Stafford, 2000. Multivariate Statistics for Wildlife and Ecology Research. Springer Verlag, New York.CrossRefGoogle Scholar
  29. Meldgaard, T., E. E. Nielsen & V. Loeschcke, 2003. Fragmentation by weirs in a riverine system: a study of genetic variation in time and space among populations of European grayling (Thymallus thymallus) in a Danish River system. Conservation Genetics 4: 735–747.CrossRefGoogle Scholar
  30. Nazariha, M. & S. Alinezhad, 1999. Planning for improvement and decrease negative impacts of Shahid-Rajaei dam. Environmental Biology 30: 9–18. [in Farsi].Google Scholar
  31. Nimalathasan, B., 2009. Determinants of key performance indicators (KPIs) of private sector banks in Srilanka: an application of exploratory factor analysis. The annals of the Stefan cel Mare University of Suceava. Fascicle of the Faculty of Economics and Public Administration 9: 9–17.Google Scholar
  32. Pelicice, F. M. & A. A. Agostinho, 2008. Fish-passage facilities as ecological traps in large Neotropical rivers. Conservation Biology 22: 180–188.PubMedCrossRefGoogle Scholar
  33. Pinheiro, A., C. M. Teixeira, A. L. Rego, J. F. Marques & H. N. Cabral, 2005. Genetic and morphological variation of Solea lascaris (Risso, 1810) along the Portuguese coast. Fisheries Research 73: 67–78.CrossRefGoogle Scholar
  34. Poulet, N., P. Berrebi, A. J. Crivelli, S. Lek & C. Argillier, 2004. Genetic and morphometric variations in the pikeperch (Sander lucioperca L.) of a fragmented delta. Archiv für Hydrobiologie 159: 531–554.CrossRefGoogle Scholar
  35. Rohlf, F. J., 1990. Numerical Taxonomy: A Multivariate Analysis System. Exeter Software, New York.Google Scholar
  36. Rohlf, F. J., 2005. TPS Dig, Version 2.04. Department of Ecology and Evolution, State University of New York, Stony Brook.Google Scholar
  37. Samaee, S. M., B. Mojazi-Amiri & S. M. Hosseini-Mazinani, 2006. Comparison of Capoeta capoeta gracilis (Cyprinidae, Teleostei) populations in the south Caspian Sea River basin, using morphometric ratios and genetic markers. Folia Zoologica 55: 323–335.Google Scholar
  38. Samaee, M., R. A. Patzner & N. Mansour, 2009. Morphological differentiation within the population of Siah Mahi, Capoeta capoeta gracilis, (Cyprinidae, Teleostei) in a river of the south Caspian Sea basin: a pilot study. Journal of Applied Ichthyology 25: 583–590.CrossRefGoogle Scholar
  39. Sneath, P. H. A. & R. R. Sokal, 1973. Numerical Taxonomy. W. H. Freeman, San Francisco.Google Scholar
  40. Strauss, R. E. & F. L. Bookstein, 1982. The truss: body form reconstruction in morphometrics. Systematic Zoology 31: 113–135.CrossRefGoogle Scholar
  41. Swain, D. P. & C. J. Foote, 1999. Stocks and chameleons: the use of phenotypic variation in stock identification. Fisheries Research 43: 113–128.CrossRefGoogle Scholar
  42. Turan, C., 1999. A note on the examination of morphometric differentiation among fish populations: the truss system. Turkish Journal of Zoology 23: 259–263.Google Scholar
  43. Turan, C., 2008. Molecular systematics of the Capoeta (Cypriniformes: Cyprinidae) species complex inferred from mitochondrial 16S rDNA sequence data. Acta Zoologica Cracoviensia 51: 1–14.Google Scholar
  44. Tzeng, T. D., 2004. Morphological variation between populations of spotted Mackerel Scomber australasicus of Taiwan. Fisheries Research 68: 45–55.CrossRefGoogle Scholar
  45. Veasey, E. A., E. A. Schammass, R. Vencovsky, P. S. Martins & G. Bandel, 2001. Germplasm characterization of Sesbania accessions based on multivariate analyses. Genetic Resources and Crop Evolution 48: 79–90.CrossRefGoogle Scholar
  46. Wimberger, P. H., 1992. Plasticity of fish body shape – the effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biological Journal of the Linnean Society 45: 197–218.CrossRefGoogle Scholar
  47. Yamamoto, S., K. Morita, I. Koizumi & K. Maekawa, 2004. Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial–temporal changes in gene frequencies. Conservation Genetics 5: 529–538.CrossRefGoogle Scholar
  48. Yamamoto, S., K. Maekawa, T. Tamate, I. Koizumi, K. Hasegawa & H. Kubota, 2006. Genetic evaluation of translocation in artificially isolated populations of white-spotted charr (Salvelinus leucomaenis). Fisheries Research 78: 352–358.CrossRefGoogle Scholar
  49. Zar, J. H., 1984. Biostatistical Analysis. Prentice Hall, Englewood Cliffs, NJ.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hossein AnvariFar
    • 1
    Email author
  • Alireza Khyabani
    • 2
  • Hamid Farahmand
    • 3
  • Saber Vatandoust
    • 4
  • Hassan AnvariFar
    • 5
  • Shrinivas Jahageerdar
    • 6
  1. 1.Department of FisheriesUniversity of Applied Science and TechnologyGolestanIran
  2. 2.University of Applied Science and TechnologyTehranIran
  3. 3.Department of Fisheries, Faculty of Natural ResourcesUniversity of TehranKarajIran
  4. 4.Department of Fisheries, Faculty of Natural Resources and AgricultureIslamic Azad University of BabolMazandaranIran
  5. 5.Department of Veterinary, Faculty of VeterinaryIslamic Azad University of BabolMazandaranIran
  6. 6.Fish Genetics and Biotechnology DivisionCentral Institute of Fisheries EducationVersova, MumbaiIndia

Personalised recommendations