Hydrobiologia

, Volume 674, Issue 1, pp 67–89 | Cite as

Assessing greenhouse gas emissions from peatlands using vegetation as a proxy

  • John Couwenberg
  • Annett Thiele
  • Franziska Tanneberger
  • Jürgen Augustin
  • Susanne Bärisch
  • Dimitry Dubovik
  • Nadzeya Liashchynskaya
  • Dierk Michaelis
  • Merten Minke
  • Arkadi Skuratovich
  • Hans Joosten
Wetland Restoration

Abstract

Drained peatlands in temperate Europe are a globally important source of greenhouse gas (GHG) emissions. This article outlines a methodology to assess emissions and emission reductions from peatland rewetting projects using vegetation as a proxy. Vegetation seems well qualified for indicating GHG fluxes from peat soils as it reflects long-term water level, affects GHG emissions via assimilate supply and aerenchyma and allows fine-scaled mapping. The methodology includes mapping of vegetation types characterised by the presence and absence of species groups indicative for specific water level classes. GHG flux values are assigned to the vegetation types following a standardized protocol and using published emission values from plots with similar vegetation and water level in regions with similar climate and flora. Carbon sequestration in trees is accounted for by estimating the annual sequestration in tree biomass from forest inventory data. The method follows the criteria of the Voluntary Carbon Standard and is illustrated using the example of two Belarusian peatlands.

Keywords

Bioindication Bog Emission reduction Fen Restoration Rewetting Succession 

Supplementary material

10750_2011_729_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 48 kb)

References

  1. Alexeyev, V. A. & R. A. Birdsey (eds), 1998. Carbon Storage in Forests and Peatlands of Russia. USDA Forest Service, Radnor.Google Scholar
  2. Alexeyev, V. A., R. A. Birdsey, V. Stakanov & I. Korotkov, 1995. Carbon in vegetation of Russian forests: methods to estimate storage and geographical distribution. Water, Air and Soil Pollution 82: 271–282.CrossRefGoogle Scholar
  3. Alm, J., L. Schulman, J. Walden, H. Nykänen, P. J. Martikainen & J. Silvola, 1999. Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80: 161–174.CrossRefGoogle Scholar
  4. Andriesse, J. P., 1988. Nature and Management of Tropical Peat Soils. FAO Soils Bulletin 59. FAO, Rome.Google Scholar
  5. Augustin, J., 2003. Gaseous emissions from constructed wetlands and (re)flooded meadows. Publicationes Instituti Geographici Universitatis Tartuensis 94: 3–8.Google Scholar
  6. Augustin, J. & B. Chojnicki, 2008. Austausch von klimarelevanten Spurengasen, Klimawirkung und Kohlenstoffdynamik in den ersten Jahren nach der Wiedervernässung von degradiertem Niedermoorgrünland. In Gelbrecht, J., D. Zak & J. Augustin (eds), Phosphor- und Kohlenstoff-Dynamik und Vegetationsentwicklung in wiedervernässten Mooren des Peenetals in Mecklenburg-Vorpommern – Status, Steuergrößen und Handlungsmöglichkeiten. Berichte des IGB, Vol. 26: 50–67.Google Scholar
  7. Augustin, J. & H. Joosten, 2007. Peatland rewetting and the greenhouse effect. International Mire Conservation Group Newsletter 2007(3): 29–30.Google Scholar
  8. Augustin, J. & W. Merbach, 1998. Greenhouse gas emissions from fen mires in Northern Germany: quantification and regulation. In Merbach, W. & L. Wittenmayer (eds) Beiträge aus der Hallenser Pflanzenernährungsforschung, Halle: 97–110.Google Scholar
  9. Augustin, J., W. Merbach, L. Steffens & B. Snelinski, 1998. Nitrous oxide fluxes of disturbed minerotrophic peatlands. Agrobiological Research 51: 47–57.Google Scholar
  10. Augustin, J., W. Merbach, H. Käding, W. Schmidt & G. Schalitz, 1996. Lachgas- und Methanemission aus degradierten Niedermoorstandorten Nordostdeutschlands unter dem Einfluß unterschiedlicher Bewirtschaftung. In Alfred-Wegener-Stiftung (ed.), Von den Ressourcen zum Recycling. Ernst & Sohn, Berlin: 131–139.Google Scholar
  11. AusAID Peat and GHG Group, 2009. Methodology for estimation of GHG emissions from tropical peat lands in Indonesia. Working Draft.Google Scholar
  12. Backman, G., 1943. Wachstum und organische Zeit. Bios, 15th ed. J. A. Barth, Leipzig.Google Scholar
  13. Baggs, E. M., 2008. A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Communications in Mass Spectrometry 22: 1664–1672.PubMedCrossRefGoogle Scholar
  14. Baldocchi, D. D., B. B. Hicks & T. P. Meyers, 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69: 1331–1340.CrossRefGoogle Scholar
  15. Bambalov, N. N. & N. I. Tanovitskaya, 2009. Current situation and utilisation of mires and peatlands in Belarus. Prirodopolzovanie 16: 82–88 (in Russian).Google Scholar
  16. Best, E. P. H. & F. H. H. Jacobs, 1997. The influence of raised water table on carbon dioxide and methane production in ditch-dissected peat grasslands in the Netherlands. Ecological Engineering 8: 129–144.CrossRefGoogle Scholar
  17. Bonneville, M.-C., I. B. Strachan, E. R. Humphreys & N. T. Roulet, 2008. Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties. Agricultural and Forest Meteorology 148: 69–81.CrossRefGoogle Scholar
  18. Bortoluzzi, E., D. Epron, A. Siegenthaler, A. Gilbert & A. Butler, 2006. Carbon balance of a European mountain bog at contrasting stages of regeneration. New Phytologist 172: 708–718.PubMedCrossRefGoogle Scholar
  19. Briemle, G., 1978. Pioniergehölze auf Moorbrachen in Abhängigkeit vom Moortyp. Telma 8: 153–169.Google Scholar
  20. Briemle, G., 1980. Untersuchungen zur Verbuschung und Sekundärbewaldung von Moorbrachen im südwestdeutschen Alpenvorland. Dissertationes Botanici 57: 1–269.Google Scholar
  21. Briemle, G., 1990. Natürliche Bewaldungstendenz und Mindestpflege von Moorbiotopen. In Göttlich, K. H. (ed.), Moor- und Torfkunde, 3rd ed. Schweizerbart, Stuttgart: 496–501.Google Scholar
  22. Brumme, R., W. Borker & S. Finke, 1999. Hierarchical control on nitrous oxide emissions in forest ecosystems. Global Biogeochemical Cycles 13: 1137–1148.CrossRefGoogle Scholar
  23. CDM Executive Board, 2009. Approved consolidated afforestation and reforestation baseline and monitoring methodology AR-ACM0001 “Afforestation and reforestation of degraded land” (version 03). http://cdm.unfccc.int/EB/046/eb46_repan14.pdf. Accessed 16 November 2010.
  24. Couwenberg, J., 2009. Methane Emissions from Peat Soils (Organic Soils, Histosols). Facts, MRV-Ability, Emission Factors. Wetlands International, Ede.Google Scholar
  25. Couwenberg, J. 2011. Greenhouse gas emissions from managed peat soils: is the IPCC reporting guidance realistic? Mires and Peat 8(02): 1–10.Google Scholar
  26. Couwenberg, J., J. Augustin, D. Michaelis & H. Joosten, 2008. Emission Reductions from Rewetting of Peatlands. Towards a Field Guide for the Assessment of Greenhouse Gas Emissions from Central European Peatlands. Duene/RSPB, Greifswald/Sandy.Google Scholar
  27. Couwenberg, J., R. Dommain & H. Joosten, 2010. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Global Change Biology 16: 1715–1732.CrossRefGoogle Scholar
  28. Crill, P., K. Hargreaves & A. Korhola, 2000. The Role of Peat in Finnish Greenhouse Gas Balances. Ministry of Trade and Industry Finland, Helsinki.Google Scholar
  29. Dias, A. T. C., B. Hoorens, R. S. P. van Logtestijn, J. E. Vermaat & R. Aerts, 2010. Plant species composition can be used as a proxy to predict methane emissions in peatland ecosystems after land use change. Ecosystems 13: 526–538.CrossRefGoogle Scholar
  30. Dierschke, H., 1994. Grundlagen und Methoden der Pflanzensoziologie. Ulmer, Stuttgart.Google Scholar
  31. Drösler, M., 2005. Trace gas exchange and climatic relevance of bog ecosystems, southern Germany. PhD thesis, Technische Universität München, München.Google Scholar
  32. Drösler, M., 2008. Von der Spurengasmessung zur Politikberatung – interdisziplinärer Ansatz und erste Ergebnisse des Verbundprojekts „Klimaschutz -Moornutzungsstrategien“. Presentation given at the BfN workshop “Biodiversität und Klimawandel” http://www.bfn.de/4399.html. Accessed 16 November 2010.
  33. Eggelsmann, R. & R. Bartels, 1975. Oxidativer Torfverzehr im Niedermoor in Abhängigkeit von Entwässerung, Nutzung und Düngung. Mitteilungen der deutschen bodenkundlichen Gesellschaft 22: 215–221.Google Scholar
  34. Ellenberg, H., H. E. Weber, E. Düll, V. Wirth & W. Werner, 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1–258.Google Scholar
  35. Fischer, U., 1999. Zur Vegetationsentwicklung naturnaher Flußtalmoore am Beispiel des NSG „Peenewiesen bei Gützkow“ (Mecklenburg-Vorpommern). Feddes Repertitorium 110: 287–324.CrossRefGoogle Scholar
  36. Flessa, H., U. Wild, M. Klemisch & J. Pfadenhauer, 1998. Nitrous oxide and methane fluxes from organic soils under agriculture. European Journal of Soil Science 49: 327–335.CrossRefGoogle Scholar
  37. Frahm, J. P. & W. Frey, 1992. Moosflora, 3rd ed. Ulmer, Stuttgart.Google Scholar
  38. Frey, W. & R. Lösch, 1998. Lehrbuch der Geobotanik. Gustav Fischer, Stuttgart.Google Scholar
  39. Frolking, S. E., N. T. Roulet, T. R. Moore, P. J. H. Richard, M. Lavoie & S. D. Muller, 2001. Modeling northern peatland decomposition and peat accumulation. Ecosystems 4: 479–498.CrossRefGoogle Scholar
  40. Frolking, S., N. Roulet & J. Fuglestvedt, 2006. How northern peatlands influence the earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. Journal of Geophysical Research 111: G01008.CrossRefGoogle Scholar
  41. Griscom, B., D. Shoch, B. Stanley, R. Cortez & N. Virgilio, 2009. Sensitivity of amounts and distribution of tropical forest carbon credits depending on baseline rules. Environmental Science & Policy 12: 897–911.CrossRefGoogle Scholar
  42. Grummo, D. G., M. A. Ilyuchik, N. A. Zeliankevich & O. V. Sozinov, 2009. [Geobotanical and ecological vegetation mapping using the example of the forest-peatland complex Yelnia]. In Grummo, D. G., O. V. Galanina, O. V. Sozinov & N. A. Zeliankevich (eds), Vegetation of Mires: Modern Problems of Classification, Mapping, Use and Protection. Proceedings of the International Theoretical and Practical Seminar, Minsk, 30 September to 1 October 2009. Pravo i Ekonomika, Minsk: 138–151.Google Scholar
  43. Hendriks, D. M. D., J. van Huissteden, A. J. Dolma & M. K. van der Molen, 2007. The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences 4: 411–424.CrossRefGoogle Scholar
  44. Hofmann, G., 1997. Mitteleuropäische Wald- und Forst-Ökosystemtypen in Wort und Bild. Allgemeine Forst Zeitschrift für Wald und Forstwirtschaft, Sonderheft.Google Scholar
  45. Holden, J., P. J. Chapman & J. C. Labadz, 2004. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography 28: 95–123.CrossRefGoogle Scholar
  46. Hundt, R. & M. Succow, 1984. Vegetationsformen des Graslandes der DDR. Wissenschaftliche Mitteilungen des Institutes für Geographie und Geoökologie der Akademie der Wissenschaften der DDR 14: 61–104.Google Scholar
  47. IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. IGES, Hayama.Google Scholar
  48. IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  49. Jacobs, C. M. J., E. J. Moors & F. J. E. van der Bolt, 2003. Invloed van waterbeheer op gekoppelde broeikasgasemissies in het veenweidegebied by ROC Zegveld. Alterra-rapport 840. Alterra, Wageningen.Google Scholar
  50. Joabsson, A., T. R. Christensen & B. Wallén, 1999. Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology and Evolution 14: 385–388.PubMedCrossRefGoogle Scholar
  51. Joosten, H., 2000. The role of peat in Finnish greenhouse balances. International Mire Conservation Group Newsletter 2000(3): 2–4.Google Scholar
  52. Joosten, H., 2009. The Global Peatland CO2 Picture. Peatland Status and Emissions in All Countries of the World. Wetlands International, Ede.Google Scholar
  53. Joosten, H. & J. Couwenberg, 2009. Are Emission Reductions from Peatlands MRV-Able? Wetlands International, Ede.Google Scholar
  54. Jungkunst, H. F., A. Freibauer, H. Neufeldt & G. Bareth, 2006. Nitrous oxide emissions from agricultural land use in Germany – a synthesis of available annual field data. Journal of Plant Nutrition and Soil Science 169: 341–351.CrossRefGoogle Scholar
  55. Koska, I., 2007. Weiterentwicklung des Vegetationsformenkonzeptes. Ausbau einer Methode für die vegetationskundliche und bioindikative Landschaftsanalyse, dargestellt am Beispiel der Feuchtgebietsvegetation Nordostdeutschlands. PhD thesis, Greifswald University, Greifswald.Google Scholar
  56. Koska, I., M. Succow, U. Clausnitzer, T. Timmermann & S. Roth, 2001. Vegetationskundliche Kennzeichnung von Mooren (topische Betrachtung). In Succow, M. & H. Joosten (eds), Landschaftsökologische Moorkunde. Schweizerbart, Stuttgart: 112–184.Google Scholar
  57. Kotowski, W., R. van Diggelen & J. Kleinke, 1998. Behaviour of wetland plant species along a moisture gradient in two geographically distant areas. Acta Botanica Neerlandica 47: 337–349.Google Scholar
  58. Kramer, H. & A. Akça, 1995. Leitfaden zur Waldmesslehre, 3rd ed. Sauerländer, Frankfurt/Main.Google Scholar
  59. Kuzyakov, Y., 2006. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology & Biochemistry 38: 425–448.CrossRefGoogle Scholar
  60. Laine, J. & K. Minkkinen, 1996. Forest drainage and the greenhouse effect. In Vasander, H. (ed.), Peatlands in Finland. Finnish Peatland Society, Helsinki: 159–164.Google Scholar
  61. Lamers, M., J. Ingwersen & T. Streck, 2007. Modelling nitrous oxide emission from water-logged soils of a spruce forest ecosystem using the biogeochemical model Wetland-DNDC. Biogeochemistry 86: 287–299.CrossRefGoogle Scholar
  62. Large, A. R. G., W. M. Mayes, M. D. Newson & G. Parkin, 2007. Using long-term monitoring of fen hydrology and vegetation to underpin wetland restoration strategies. Applied Vegetation Science 10: 417–428.CrossRefGoogle Scholar
  63. Lenschow, D. H., 1995. Micrometeorological techniques for measuring biosphere-atmosphere trace gas exchange. In Matson, P. & R. Harris (eds), Biogenic Trace Gases: Measuring Emissions from Soil and Water. Blackwell, Oxford: 126–163.Google Scholar
  64. Livingston, G. P. & G. L. Hutchinson, 1995. Enclosure-based measurements of trace gas exchanges: applications and sources of error. In Matson, P. & R. Harris (eds), Biogenic Trace Gases: Measuring Emissions from Soil and Water. Blackwell, Oxford: 14–51.Google Scholar
  65. Lohila, A., T. Laurila, L. Aro, M. Aurela, J.-P. Tuovinen, J. Laine, P. Kolari & K. Minkkinen, 2007. Carbon dioxide exchange above a 30-year-old Scots pine plantation established on organic-soil cropland. Boreal Environment Research 12: 141–157.Google Scholar
  66. Maljanen, M., H. Óskarsson, B. D. Sigurdsson, J. Guðmundsson, J. T. Huttunen & P. J. Martikainen, 2010. Greenhouse gas balances of managed peatlands in the Nordic countries – present knowledge and gaps. Biogeosciences 7: 2711–2738.CrossRefGoogle Scholar
  67. Margóczi, K. & E. Aradi, 2007. Small scale and large scale monitoring of vegetation changes in a restored wetland. In Okruszko, T., E. Maltby, J. Szatylowicz, D. Swiatek & W. Kotowski (eds), Wetlands: Monitoring. Modelling and Management. Taylor & Francis, London: 55–58.Google Scholar
  68. Meyer, K., 1999. Die Flüsse der klimarelevanten Gase CO2, CH4 und N2O eines norddeutschen Niedermoores unter dem Einfluß der Wiedervernässung. Göttinger Bodenkundliche Berichte 111: 651–664.Google Scholar
  69. Minke, M., A. Thiele, J. Augustin, J. Couwenberg, V. Fenchuk, T. Yarmashuk, N. Liashchynskaya, V. Ryzhikov & H. Joosten, 2009. Greenhouse gas emission reduction from peatland restoration in Belarus: testing and adapting a rapid assessment tool. In Peatlands in the Global Carbon Cycle. Proceedings of the 2nd International Symposium on Carbon in Peatlands, Prague, Czech Republic, 25–30 September 2009. http://www.peatnet.siu.edu/Assets/M.pdf. Accessed 16 November 2010.
  70. Minkkinen, K., K. A. Byrne & C. Trettin, 2008. Climate impacts of peatland forestry. In Strack, M. (ed.), Peatlands and Climate Change. International Peat Society, Jyväskylä: 98–122.Google Scholar
  71. Miroshnikov, V. C., O. A. Trull & V. E. Ermakov, 1980. [Forest appraiser]. Urazhay, Minsk (in Russian).Google Scholar
  72. Mitchell, C. C. & A. N. William, 1993. Vegetation change in a topogenic bog following beaver flooding. Bulletin of the Torrey Botanical Club 120: 136–147.CrossRefGoogle Scholar
  73. Moilanen, M., K. Silfverberg & T. J. Hokkanen, 2002. Effects of wood-ash on the tree growth, vegetation and substrate quality of a drained mire: a case study. Forest Ecology and Management 171: 321–338.CrossRefGoogle Scholar
  74. Mueller-Dombois, D. & H. Ellenberg, 1974. Aims and Methods of Vegetation Ecology. Wiley, New York.Google Scholar
  75. Müller, N., 1999. Einfluß biotischer und abiotischer Parameter auf die CH4-C-Emissionen in einem degradierenden Hochmoor. Decheniana 152: 47–64.Google Scholar
  76. Müller, N., M. Bauche & N. Lamersdorf, 1997. Zeitliche und räumliche Variabilität der CO2-C-Emissionen in einem ombrotrophen Hochmoor des Hochharzes. Telma 27: 131–146.Google Scholar
  77. Mundel, G., 1976. Untersuchungen zur Torfmineralisation in Niedermooren. Archiv für Acker- und Pflanzenbau und Bodenkunde 20: 669–679.Google Scholar
  78. NCDC (National Climatic Data Center), 2010. Asheville, USA. http://www.ncdc.noaa.gov/oa/ncdc.html. Accessed 16 November 2010.
  79. Nieveen, J. P., C. M. J. Jacobs & A. F. G. Jacobs, 1998. Diurnal and seasonal variation of carbon dioxide exchange from a former true raised bog. Global Change Biology 4: 823–833.CrossRefGoogle Scholar
  80. Nilsson, M., J. Sagerfors, I. Buffam, H. Laudon, T. Eriksson, A. Grelle, L. Klemedtsson, P. Weslien & A. Lindroth, 2008. Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – a significant sink after accounting for all C-fluxes. Global Change Biology 14: 2317–2332.CrossRefGoogle Scholar
  81. Peet, R. K., T. R. Wentworth & P. S. White, 1998. The North Carolina Vegetation Survey protocol: a flexible, multipurpose method for recording vegetation composition and structure. Castanea 63: 262–274.Google Scholar
  82. Penman, J., M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe & F. Wagner (eds), 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. IGES, Hayama.Google Scholar
  83. Prach, K. & P. Pyshchek, 2001. Using spontaneous succession for restoration of human-disturbed habitats: experience from Central Europe. Ecological Engineering 17: 55–62.CrossRefGoogle Scholar
  84. Price, J. S. & G. S. Whitehead, 2001. Developing hydrologic thresholds for Sphagnum recolonization on an abandoned cutover bog. Wetlands 21: 32–40.CrossRefGoogle Scholar
  85. Querner, E. P., 1997. Description and application of the combined surface and groundwater flow model MOGROW. Journal of Hydrology 192: 158–188.CrossRefGoogle Scholar
  86. Ramenski, L. G., I. A. Tsatsenkin, O. N. Chizhikov & N. A. Antipin, 1956. [Ecological Evaluation of Grazed Lands by Their Vegetation]. Gosudarstvennoe izdatelstvo selskokhozaystvennoy literatury, Moscow (in Russian).Google Scholar
  87. Richert, M., O. Dietrich, D. Koppisch & S. Roth, 2000. The influence of rewetting on vegetation development and decomposition in a degraded fen. Restoration Ecology 8: 186–195.CrossRefGoogle Scholar
  88. Robert, E. C., L. Rochefort & M. Gareau, 1999. Natural revegetation of two block-cut mined peatlands in eastern Canada. Canadian Journal of Botany 77: 447–459.Google Scholar
  89. Rosenthal, G., 2010. Secondary succession in a fallow central European wet grassland. Flora 205: 153–160.Google Scholar
  90. Rothmaler, W., 2005. Exkursionsflora von Deutschland: Kritischer Band. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  91. Roulet, N. T., P. M. Lafleur, P. J. H. Richard, T. R. Moore, E. R. Humphreys & J. Bubier, 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13: 397–411.CrossRefGoogle Scholar
  92. Salm, J.-O., K. Kimmel, V. Uri & Ü. Mander, 2009. Global warming potential of drained and undrained peatlands in Estonia: a synthesis. Wetlands 29: 1081–1092.CrossRefGoogle Scholar
  93. Salonen, V., 1990. Early plant succession in two abandoned cut-over peatland areas. Holarctic Ecology 13: 217–223.Google Scholar
  94. Sautkina, T. A., 1999. Fieldguide of Higher Plants of Belarus. Design Pro, Minsk.Google Scholar
  95. Scamoni, A., 1960. Waldgesellschaften und Waldstandorte, 3rd ed. Akademie-Verlag, Berlin.Google Scholar
  96. Schaffers, A. P. & K. V. Sykora, 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science 11: 225–244.CrossRefGoogle Scholar
  97. Schrier-Uijl, A. P., E. M. Veenendaal, P. A. Leffelaar, J. C. van Huissteden & F. Berendse, 2008. Spatial and temporal variation of methane emissions in drained eutrophic peat agro-ecosystems: drainage ditches as emission hotspots. Biogeosciences Discussions 5: 1237–1261.CrossRefGoogle Scholar
  98. Schroeder, F.-G., 1998. Lehrbuch der Pflanzengeographie. UTB Quelle & Meyer, Wiesbaden.Google Scholar
  99. Shannon, R. D. & J. R. White, 1994. A three-year study of controls on methane emissions from two Michigan peatlands. Biogeochemistry 27: 35–60.CrossRefGoogle Scholar
  100. Sommer, M., S. Fiedler, S. Glatzel & M. Kleber, 2003. First estimates of regional (Allgäu, Germany) and global CH4 fluxes from wet colluvial margins of closed depressions in glacial drift areas. Agriculture Ecosystems & Environment 103: 251–257.CrossRefGoogle Scholar
  101. Stephens, J. C., L. H. Allen & E. Chen, 1984. Organic soil subsidence. In Holzer, T. L. (ed.), Man-Induced Land Subsidence. Geological Society of America, Boulder: 107–122.Google Scholar
  102. Tauchnitz, N., R. Brumme, S. Bernsdorf & R. Meissner, 2008. Nitrous oxide and methane fluxes of a pristine slope mire in the German National Park Harz Mountains. Plant and Soil 303: 131–138.CrossRefGoogle Scholar
  103. Thiele, A., F. Tanneberger, M. Minke, J. Couwenberg, W. Wichtmann, Z. Karpowicz, V. Fenchuk, A. Kozulin & H. Joosten, 2009. Belarus boosts peatland restoration in Central Europe. Peatlands International 2009(1): 32–34.Google Scholar
  104. Timmermann, T., K. Margóczi, G. Takács & K. Vegelin, 2006. Restoration of peat-forming vegetation by rewetting species-poor fen grasslands. Applied Vegetation Science 9: 241–250.CrossRefGoogle Scholar
  105. Tomassen, H. B. M., A. J. P. Smolders, L. P. M. Lamers & J. G. M. Roelofs, 2004. Development of floating rafts after the rewetting of cut-over bogs: the importance of peat quality. Biogeochemistry 71: 69–87.CrossRefGoogle Scholar
  106. Toogood, S. E. & C. B. Joyce, 2009. Effects of raised water levels on wet grassland plant communities. Applied Vegetation Science 12: 283–294.CrossRefGoogle Scholar
  107. Trommer, C., 1853. Die Bonitirung des Bodens vermittelst wildwachsender Pflanzen. Ein Leitfaden für Boniteure, Landwirthe, Forstmänner und Gärtner. C. A. Koch, Greifswald.Google Scholar
  108. Tuittila, E. S., V. M. Komulainen, H. Vasander & J. Laine, 1999. Restored cut-away peatland as a sink for atmospheric CO2. Oecologia 120: 563–574.CrossRefGoogle Scholar
  109. Tuittila, E. S., V. M. Komulainen, H. Vasander, H. Nykänen, P. J. Martikainen & J. Laine, 2000. Methane dynamics of a restored cut-away peatland. Global Change Biology 6: 569–581.CrossRefGoogle Scholar
  110. Tuittila, E. S., H. Vasander & J. Laine, 2004. Sensitivity of C sequestration in reintroduced Sphagnum to water-level variation in a peat extraction peatland. Restoration Ecology 12: 483–493.CrossRefGoogle Scholar
  111. UNFCCC, 2005. Good practise guidance and adjustments under Article 5, paragraph 2, the Kyoto Protocol. Decision 20/CMP.1.Google Scholar
  112. van de Akker, J. J. H., P. J. Kuikman, F. de Vries, I. Hoving, M. Pleijter, R. F. A. Hendriks, R. J. Wolleswinkel, R. T. L. Simões & C. Kwakernaak, 2008. Emission of CO2 from agricultural peat soils in the Netherlands and ways to limit this emission. In: Farrell, C. & J. Feehan (eds), Proceedings of the 13th International Peat Congress After Wise Use – The Future of Peatlands, Vol. 1 Oral Presentations, Tullamore, Ireland, 8–13 June 2008. International Peat Society, Jyväskylä: 645–648.Google Scholar
  113. van den Bos, R., 2003. Human influence on carbon fluxes in coastal peatlands: process analysis, quantification and prediction. PhD thesis, VU Amsterdam.Google Scholar
  114. van den Pol-van Dasselaar, A., M. L. van Beusichem & O. Oenema, 1999. Methane emissions from wet grasslands on peat soil in a nature reserve. Biogeochemistry 44: 205–220.CrossRefGoogle Scholar
  115. van der Valk, A. G., L. Squires & C. H. Welling, 1994. Assessing the impacts of an increase in water level on wetland vegetation. Ecological Applications 4: 525–534.CrossRefGoogle Scholar
  116. van Dijk, J., M. Stroetenga, P. M. van Bodegom & R. Aerts, 2007. The contribution of rewetting to vegetation restoration of degraded peat meadows. Applied Vegetation Science 10: 315–324.CrossRefGoogle Scholar
  117. van Huissteden, J., R. van den Bos & I. Marticorena Alvarez, 2006. Modelling the effect of water-table management on CO2 and CH4 fluxes from peat soils. Geologie en Mijnbouw 85: 3–18.Google Scholar
  118. VCS, 2011. Verified Carbon Standard Version 3. http://www.v-c-s.org/docs/VCS Standard - v3.0.pdf. Accessed 12 May 2011.
  119. Veenendaal, E. M., O. Kolle, P. A. Leffelaar, A. P. Schrier-Uijl, J. van Huissteden, J. van Walsem, F. Möller & F. Berendse, 2007. CO2 exchange and carbon balance in two grassland sites on eutrophic drained peat soils. Biogeosciences 4: 1027–1040.CrossRefGoogle Scholar
  120. Velthof, G. L., A. B. Brader & O. Oenema, 1996. Seasonal variations in nitrous oxide losses from managed grasslands in The Netherlands. Plant and Soil 181: 263–274.CrossRefGoogle Scholar
  121. Verhagen, A., J. J. H. van den Akker, C. Blok, W. H. Diemont, J. H. J. Joosten, M. A. Schouten, R. A. M. Schrijver, R. M. den Uyl, P. A. Verweij & J. H. M. Wösten, 2009. Peatlands and carbon flows. Outlook and importance for the Netherlands. Report WAB 500102 027, Netherlands Environmental Assessment Agency PBL, Bilthoven.Google Scholar
  122. Von Arnold, K., 2004. Forests and greenhouse gases – fluxes of CO2, CH4 and N2O from drained forests on organic soils. Linköping Studies in Arts and Science no 302.Google Scholar
  123. Weber, C. A., 1902. On the vegetation and development of the raised bog of Augstumal in the Memel delta. In: Couwenberg, J. & H. Joosten (eds; 2002) C.A. Weber and the Raised Bog of Augstumal. International Mire Conservation Group/PPE Grif & K, Tula: 52–270.Google Scholar
  124. Whalen, S. C., 2005. Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environmental Engineering Science 22: 73–94.CrossRefGoogle Scholar
  125. Whiting, G. J. & J. P. Chanton, 2001. Greenhouse carbon balance of wetlands: CH4 emission versus carbon sequestration. Tellus B 53: 521–528.CrossRefGoogle Scholar
  126. Wichtmann, W. & H. Joosten, 2007. Paludiculture: peat formation and renewable resources from rewetted peatlands. IMCG Newsletter 2007(3): 24–28.Google Scholar
  127. Wichtmann, W., F. Tanneberger, S. Wichmann & H. Joosten, 2010. Paludiculture is paludifuture. Climate, biodiversity and economic benefits from agriculture and forestry on rewetted peatland. Peatlands International 2010(1): 48–51.Google Scholar
  128. Wild, U., T. Kamp, A. Lenz, S. Heinz & J. Pfadenhauer, 2001. Cultivation of Typha spp. in constructed wetlands for peatland restoration. Ecological Engineering 17: 49–54.CrossRefGoogle Scholar
  129. Wirth, V. & R. Düll, 2000. Farbatlas Flechten und Moose. Ulmer, Stuttgart.Google Scholar
  130. Wösten, J. H. M., A. B. Ismail & A. L. M. van Wijk, 1997. Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 78: 25–36.CrossRefGoogle Scholar
  131. Zhou, L., G. Zhou & Q. Jia, 2009. Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China. Aquatic Botany 91: 91–98.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • John Couwenberg
    • 1
    • 2
  • Annett Thiele
    • 3
  • Franziska Tanneberger
    • 2
    • 4
  • Jürgen Augustin
    • 5
  • Susanne Bärisch
    • 4
  • Dimitry Dubovik
    • 6
  • Nadzeya Liashchynskaya
    • 3
  • Dierk Michaelis
    • 1
  • Merten Minke
    • 3
  • Arkadi Skuratovich
    • 6
  • Hans Joosten
    • 1
  1. 1.Institute of Botany and Landscape EcologyGreifswald UniversityGreifswaldGermany
  2. 2.DUENE e. V., c/o Institute of Botany and Landscape EcologyGreifswald UniversityGreifswaldGermany
  3. 3.APB BirdLife BelarusMinskBelarus
  4. 4.Michael Succow Stiftung, c/o Institute of Botany and Landscape EcologyGreifswald UniversityGreifswaldGermany
  5. 5.Leibniz-Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
  6. 6.Institute of Experimental BotanyNational Academy of SciencesMinskBelarus

Personalised recommendations