, 671:165 | Cite as

Potential triggers of akinete differentiation in Nodularia spumigena (Cyanobacteriaceae) isolated from Australia

  • Jackie H. Myers
  • John Beardall
  • Graeme Allinson
  • Scott Salzman
  • Simon Robertson
  • Leanne Gunthorpe
Primary Research Paper


Nodularia spumigena, like many cyanobacteria, produces specialised reproductive structures, known as akinetes, which are believed to allow survival under unfavourable conditions. This study investigated the effects of salinity, nitrogen and phosphorus concentration at two irradiances on akinete differentiation in a N. spumigena isolate from the Gippsland Lakes, Victoria, Australia. A computer image analysis program was used to photograph filaments and assess production of akinetes over time in separate experiments for each environmental parameter. Heterocyst production and cell morphology were also examined. The results suggest that akinete production increases over time. Production of akinetes is further increased at low and high salinities and with the addition of nitrate. Higher irradiance increases akinete differentiation, although in combination with different phosphorus concentrations causes varied effects. The development and sedimentation of akinetes may provide an inoculum for reoccurring blooms. Heterocysts were only observed during experiments with varying salinity and nitrogen exposures. Light quantity appeared to play a large role in heterocyst production. The ability of N. spumigena to produce akinetes and heterocysts is likely to be part of the reason for its success and continual occurrence in estuarine environments low in nitrogen, such as the Gippsland Lakes, Victoria, Australia. Factors known to reduce heterocyst and akinete production will provide new insight to possible management controls for this species.


Nodularia spumigena Akinete differentiation Nutrients Salinity Irradiance Algal blooms 



This research was supported by the Gippsland Coastal Board Future Directions and Action Plan Funding Project EG0405-04-16 and by an ARC Linkage grant (LP0669755) to J Beardall and L Gunthorpe.


  1. Adams, D. G. & P. S. Duggan, 1999. Tansley Review No. 107 Heterocyst and akinete differentiation in cyanobacteria. New Phytology 144: 3–33.CrossRefGoogle Scholar
  2. Agrawal, S. C. & V. Singh, 2000. Vegetative survival, akinete formation and germination in three blue-green algae and one green alga in relation to light intensity, temperature, heat shock and UV exposure. Folia Microbiologia 45: 439–446.CrossRefGoogle Scholar
  3. Ahuja, G., J. S. Khattar & T. A. Sarma, 2008. Interaction between carbon and nitrogen metabolism during akinete development in the cyanobacterium Anabaena torulosa. Journal of Basic Microbiology 48: 125–129.PubMedCrossRefGoogle Scholar
  4. Baker, P. D., 1999. Role of akinetes in the development of cyanobacterial populations in the lower Murray River, Australia. Marine and Freshwater Research 50: 265–279.CrossRefGoogle Scholar
  5. Baker, P. D. & D. Bellifemine, 2000. Environmental influences on akinete germination of Anabaena circinalis and implications for management of cyanobacterial blooms. Hydrobiologia 427: 65–73.CrossRefGoogle Scholar
  6. Bolch, C. J. S. & S. I. Blackburn, 1996. Isolation and purification of Australian strains of the toxic cyanobacterium Microcystis aeruginosa Kutz. Journal of Applied Phycology 8: 5–13.CrossRefGoogle Scholar
  7. Dignum, M., H. C. P. Matthus, R. Pel, H. J. Laanbroek & L. R. Mur, 2005. Nutrient limitation of freshwater cyanobacteria. In Husiman, J., H. C. P. Matthijs & P. M. Visser (eds), Harmful Cyanobacteria. Springer, Netherlands: 65–86.CrossRefGoogle Scholar
  8. Fay, P., 1970. Photostimulation of nitrogen fixation in Anabaena cylindrica. Biochimica et Biophysica Acta 216: 353–356.PubMedCrossRefGoogle Scholar
  9. Fay, P., J. A. Lynn & S. C. Majer, 1984. Akinete development in the planktonic blue-green alga Anabaena circinalis. British Phycological Journal 19: 163–173.CrossRefGoogle Scholar
  10. Francis, G., 1978. Poisonous Australian Lake. Nature 18: 11–12.Google Scholar
  11. Gentile, J. H. & T. E. Maloney, 1969. Toxicity and environmental requirements of a strain of Aphanizomenon flos-aquae (L.) Ralfs. Canadian Journal Microbiology 15: 165–173.CrossRefGoogle Scholar
  12. Hardin, S. C. & R. W. Fisher, 1995. Characterization of akinete differentiation in the cyanobacterium Anabaena azollae. Current Microbiology 31: 265–269.CrossRefGoogle Scholar
  13. Innok, S., Chunleuchanon, S., Boonkerd, N., Teaumroong, N. 2009. Cyanobacterial akinete induction and its application as biofertilizer for rice cultivation. Journal of Applied Phycology 21(6): 737–744.Google Scholar
  14. Jones, G. J., S. I. Blackburn & N. S. Parker, 1994. A toxic bloom of Nodularia Spumigena Mertens in Orielton Lagoon, Tasmania. Australian Journal of Marine and Freshwater Research 45: 787–800.CrossRefGoogle Scholar
  15. Karlsson-Elfgren, I. & A. K. Brunberg, 2004. The importance of shallow sediments in the recruitment of Anabaena and Aphanizomenon (Cyanophyceae). Journal of Phycology 40: 831–836.CrossRefGoogle Scholar
  16. Li, R., M. Watanabe & M. M. Watanabe, 1997. Akinete formation in planktonic Anabaena spp. (cyanobacteria) by treatment with low temperature. Journal of Phycology 33: 576–584.CrossRefGoogle Scholar
  17. Mazur-Marzec, H., L. Zeglinska & M. Plinski, 2005. The effect of salinity on the growth, toxin production, and morphology or Nodularia spumigena isolated from the Gulf of Gdansk, southern Baltic Sea. Journal of Applied Phycology 17: 171–179.CrossRefGoogle Scholar
  18. Moisander, P. H. & H. W. Paerl, 2000. Growth, primary productivity, and nitrogen fixation potential of Nodularia spp. (Cyanophyceae) in water from a subtropical estuary in the United States. Journal of Phycology 36: 645–658.CrossRefGoogle Scholar
  19. Moore, D., M. O’Donohue, G. Shaw & C. Critchley, 2003. Potential triggers for akinete differentiation in an Australian strain of the cyanobacterium Cylindrospermopsis raciborskii (AWT 205/1). Hydrobiologia 506: 175–180.CrossRefGoogle Scholar
  20. Moore, D., M. O’Donohue, C. Garnett, C. Critchley & G. Shaw, 2005. Factors affecting akinete differentiation in Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria). Freshwater Biology 50: 345–352.CrossRefGoogle Scholar
  21. Myers, J. H., 2008. Effects of Environmental Parameters on the Physiology of the Cyanobacterium Nodularia spumigena Isolated from the Gippsland Lakes, Victoria, Australia. PhD Thesis, Monash University, 191 pp.Google Scholar
  22. Myers, J. H., J. Beardall, G. Allinson, S. Salzman & L. Gunthorpe, 2009. Environmental influences on akinete germination and development in Nodularia spumigena (Cyanobacteriaceae), isolated from the Gippsland Lakes, Victoria, Australia. Hydrobiologia 649: 239–247.CrossRefGoogle Scholar
  23. NHMRC, 1994. Health Effects of Toxic Cyanobacteria (Blue-green algae). National Health and Medical Research Council, Canberra.Google Scholar
  24. Nordin, R. N. & J. R. Stein, 1980. Taxonomic revision of Nodularia (Cyanophyceae/Cyanobacteria). Canadian Journal of Botany 58: 1211–1224.CrossRefGoogle Scholar
  25. Olli, K., K. Kangro & M. Kabel, 2005. Akinete production of Anabaena lemmermannii and A. Cylindrica (Cyanophyceae) in natural populations of N- and P-limited coastal mesocosms. Journal of Phycology 41: 1094–1098.CrossRefGoogle Scholar
  26. Pandey, R. K., 1989. Induction of akinete formation in Nodularia spumigena by temperature. Journal Basic Microbiology 29(7): 477–480.CrossRefGoogle Scholar
  27. Pandey, G. P. & A. K. Kashyap, 1987. Factors affecting formation of spores (akinetes) in cyanobacterium Anabaena doliolum (Ads strain). Journal of Plant Physiology 127: 123–134.Google Scholar
  28. Pandey, G. P. & E. R. S. Talpasayi, 1980. Control of sporulation in a blue-green alga Nodularia spumigena MERTENS. Indian Journal Botany 3: 128–133.Google Scholar
  29. Rother, J. A. & P. Fay, 1979. Blue-green algal growth and sporulation in response to stimulated surface bloom conditions. British Phycological Journal 14: 59–69.CrossRefGoogle Scholar
  30. Sarma, T. A. & R. Ghai, 1998. Pattern of akinete differentiation in the cyanobacterium Scytonema fritschii. Folia Microbiologia 43(6): 649–656.CrossRefGoogle Scholar
  31. Sarma, T. A., G. Ahuja & J. I. S. Khattar, 2000. Effect of nutrients and aeration on O2 evolution and photosynthetic pigments of Anabaena torulosa during akinete differentiation. Folia Microbiologia 45: 434–438.CrossRefGoogle Scholar
  32. Sarma, T. A., G. Ahuja & J. I. S. Khattar, 2004. Nutrient stress causes akinete differentiation in Cyanobacterium Anabaena torulosa with concomitant increase in nitrogen reserve substances. Folia Microbiologia 49(5): 557–562.CrossRefGoogle Scholar
  33. Shafik, H. M., L. Voros, P. Sprober, M. Presing & A. W. Kovacs, 2003. Some special morphological features of Cylindrospermopsis raciborskii in batch and continuous cultures. Hydrobiologia 506–509: 163–167.CrossRefGoogle Scholar
  34. Singh, H. N. & B. S. Srivastava, 1968. Studies on morphogenesis in a blue-green alga. I. Effects of inorganic nitrogen sources on developmental morphology of Anabaena doliolum. Canadian Journal Microbiology 14: 1341–1346.CrossRefGoogle Scholar
  35. Stephens, A., N. Biggins & S. Brett, 2004. Algal Bloom Dynamics in the Estuarine Gippsland Lakes. EPA Marine Science Unit, Melbourne, Australia, 23 pp.Google Scholar
  36. Suikkanen, S., H. Kaartokallio, S. hallfors, M. Huttunen & M. Laamanen, 2010. Life cycle strategies of bloom-forming, filamentous cyanobacteria in the Baltic Sea. Deep-Sea Research II 57: 199–209.CrossRefGoogle Scholar
  37. Sutherland, J. M., M. Herdman & W. D. P. Stewart, 1979. Akinetes of the cyanobacterium Nostoc PCC 7524: Macromolecular composition, structure and control of differentiation. Journal General Microbiology 115: 273–287.Google Scholar
  38. Thompson, P. A., I. Jameson & S. I. Blackburn, 2009. The influence of light quality on akinete formation and germination in the toxic cyanobacterium Anabaena circinalis. Harmful Algae 8: 504–512.CrossRefGoogle Scholar
  39. Van Buynder, P. G., T. Oughtred, B. Kirkby, S. Phillips, G. Eaglesham, K. Thomas & M. Burch, 2001. Nodularin uptake by seafood during a cyanobacterial bloom. Environmental Toxicology 16(6): 468–471.PubMedCrossRefGoogle Scholar
  40. van Dok, W. & B. T. Hart, 1996. Akinete differentiation in Anabaena circinalis (Cyanophyta). Journal of Phycology 32: 557–565.CrossRefGoogle Scholar
  41. Webster, I. T., J. S. Parslow, R. B. Grayson, R. P. Molloy, J. Andrewartha, P. Sakov, K. S. Tan, S. J. Walker & B. B. Wallace, 2001. Gippsland Lakes Environmental Study: Assessing Options for Improving Water Quality and Ecological Function. CSIRO, Glen Osmond.Google Scholar
  42. Wildman, R. B., J. H. Loescher & C. L. Winger, 1975. Development and germination of akinetes of Aphanizomenon flos-aquae. Journal of Phycology 11: 96–104.Google Scholar
  43. Yumnam, D. D. & P. M. Reddy, 1973. Influence of trace elements on akinete differentiation and germination in a blue-green alga (cyanobacterium), Nodularia spumigena. Algological Studies 9: 450–481.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jackie H. Myers
    • 1
    • 2
  • John Beardall
    • 1
  • Graeme Allinson
    • 2
    • 3
  • Scott Salzman
    • 4
  • Simon Robertson
    • 5
  • Leanne Gunthorpe
    • 6
  1. 1.School of Biological SciencesMonash University (Clayton Campus)ClaytonAustralia
  2. 2.Centre Aquatic Pollution Identification Management (CAPIM), Bio21 InstituteThe University of MelbourneParkvilleAustralia
  3. 3.Department of Primary Industries, Future Farming Systems ResearchDPI Queenscliff CentreQueenscliffAustralia
  4. 4.School of Information SystemsDeakin University (Warrnambool Campus)WarrnamboolAustralia
  5. 5.Fish Ageing Services Pty LtdPortarlingtonAustralia
  6. 6.Department of Primary Industries, Fisheries VictoriaDPI Queenscliff CentreQueenscliffAustralia

Personalised recommendations