, 671:105 | Cite as

Dispersal and demography of brown trout, Salmo trutta, inferred from population and family structure in unstable Mediterranean streams

  • Núria SanzEmail author
  • Raquel Fernández-Cebrián
  • Frederic Casals
  • Rosa M. Araguas
  • José Luis García-Marín
Primary Research Paper


The spatial distribution of closely related individuals can be inferred from genetic data and provides valuable information about dispersal patterns and gene flow contributing to the population genetic structure of organisms. Here, we analyzed family distribution of brown trout Salmo trutta in the uppermost reaches of the Mediterranean Son River basin by genotyping nine microsatellite loci. Population structure suggested a model of two units heavily affected by hatchery introgression superimposed on a hydrographic pattern. We observed kin-biased spatial distribution, implying limited dispersal of related fish, probably favored by severe climate conditions in this system. However, downstream dispersal was observed for some large adult fish. Variance in family size defined small estimates of effective population sizes (Ne) in all streams. Comparison of estimates by several methods indicated that factors other than variation of family size are responsible for such low values. The population structure in the Son River basin is, then, represented by interconnected locations in which dispersion of the fish is probably conditioned by oscillations in water discharge, particularly the extremely low water flow during summer. Stream discharge variation could also be related to the flexibility of the mating system. Such characteristics make populations especially vulnerable to stocking and to any other potential effects.


Brown trout Dispersal patterns Effective population size Family structure Population structure 



This research received financial support from “Fundació Territori i Paisatge” of “Caixa de Catalunya” and from the research project REN-2003-05931/GLO of the Spanish “Ministerio de Ciencia y Tecnología”. We thank Noelia Jiménez for help with sampling and Oriol Vidal for help with English editing.


  1. Apostolidis, A. P., M.-J. Madeira, M. M. Hansen & A. Machordom, 2008. Genetic structure and demographic history of brown trout (Salmo trutta) populations from the southern Balkans. Freshwater Biology 53: 1555–1566.CrossRefGoogle Scholar
  2. Araguas, R. M., N. Sanz, C. Pla & J. L. García-Marín, 2004. Breakdown of the brown trout evolutionary history due to hybridization between native and cultivated fish. Journal of Fish Biology 65: 28–37.CrossRefGoogle Scholar
  3. Araguas, R. M., M. I. Roldán, J. L. García-Marín & C. Pla, 2007. Management of gene diversity in the endemic killifish Aphanius iberus: Revising Operational Conservation Units. Ecology of Freshwater Fish 16: 257–266.Google Scholar
  4. Araguas, R. M., N. Sanz, R. Fernández, F. M. Utter, C. Pla & J. L. García-Marín, 2008. Genetic refuges for a self-sustained fishery: experience in wild brown trout populations in the eastern Pyrenees. Ecology of Freshwater Fish 17: 610–616.CrossRefGoogle Scholar
  5. Araki, H., R. S. Waples, W. R. Ardren, B. Cooper & M. S. Blouin, 2007a. Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Molecular Ecology 16: 953–966.PubMedCrossRefGoogle Scholar
  6. Araki, H., W. R. Ardren, E. Olsen, B. Cooper & M. S. Blouin, 2007b. Reproductive success of captive-bred steelhead trout in the wild: evaluation of three hatchery programs in the Hood River. Conservation Biology 21: 181–190.PubMedCrossRefGoogle Scholar
  7. Ayllon, F., P. Moran & E. García-Vázquez, 2006. Maintenance of a small anadromous subpopulation of brown trout (Salmo trutta L.) by straying. Freshwater Biology 51: 351–358.CrossRefGoogle Scholar
  8. Buston, P. M., S. M. Bogdanowicz, A. Wong & R. G. Harrison, 2007. Are clownfish groups composed of close relatives? An analysis of microsatellite DNA variation in Amphiprion percula. Molecular Ecology 16: 3671–3678.PubMedCrossRefGoogle Scholar
  9. Cairney, M., J. B. Taggart & B. Høyheim, 2000. Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Molecular Ecology 9: 2155–2234.CrossRefGoogle Scholar
  10. Carlsson, J., K. H. Olsen, J. Nilsson, Ø. Øverli & O. B. Stabell, 1999. Microsatellites reveal fine-scale genetic structure in stream-living brown trout. Journal of Fish Biology 55: 1290–1303.CrossRefGoogle Scholar
  11. Carlsson, J., J. E. L. Carlsson, K. H. Olsen, M. M. Hansen, T. Eriksson & J. Nilsson, 2004. Kin-biased distribution in brown trout: an effect of redd location or kin recognition? Heredity 92: 53–60.PubMedCrossRefGoogle Scholar
  12. Chenuil, A., L. Crespin, L. Pouyaud & P. Berrebi, 2000. Movements of adult fish in a hybrid zone revealed by microsatellite genetic analysis and capture-recapture data. Freshwater Biology 43: 121–131.CrossRefGoogle Scholar
  13. Crow, J. F. & C. Denniston, 1988. Inbreeding and variance effective population numbers. Evolution 42: 482–495.CrossRefGoogle Scholar
  14. De Miguel, R., E. Pino, A. Ramiro, F. Aranda, J. P. Peña, I. Doadrio & C. Fernández-Delgado, 2010. On the occurrence of Anaecypris hispanica, an extremely endangered Iberian endemism, in the Guadalquivir River basin. Journal of Fish Biology 76: 1454–1465.PubMedCrossRefGoogle Scholar
  15. Doadrio I., 2001. Atlas y Libro Rojo de los Peces Continentales de España. Museo Nacional de Ciencias Naturales, Madrid: 233.Google Scholar
  16. Duchesne, P., C. Étienne & L. Bernatchez, 2006. PERM: a computer program to detect structuring factors in social units. Molecular Ecology Notes 6: 965–967.CrossRefGoogle Scholar
  17. Estoup, A., P. Presa, F. Krieg, D. Vaiman & R. Guyomard, 1993. (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71: 488–496.PubMedCrossRefGoogle Scholar
  18. Estoup, A., C. R. Largiader, E. Perrot & D. Chourrout, 1996. Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Molecular Marine Biology and Biotechnology 5: 295–298.Google Scholar
  19. Estoup, A., F. Roussset, Y. Michalakis, J. M. Cornuet, M. Adriamanga & R. Guyomard, 1998. Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Molecular Ecology 7: 339–353.PubMedCrossRefGoogle Scholar
  20. Evanno, G., S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology 14: 2611–2620.PubMedCrossRefGoogle Scholar
  21. Frankham, R., 1995. Effective population size/adult population size ratios in wildlife: a review. Genetic Research 66: 95–107.CrossRefGoogle Scholar
  22. Frankham, R., J. D. Ballou & D. A. Briscoe, 2002. Introduction to Conservation Genetics. Cambridge University Press, Cambridge, UK.Google Scholar
  23. Fraser, D. J., M. M. Hansen, S. Øtergaard, N. Tessier, M. Legault & L. Bernatchez, 2007. Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems. Molecular Ecology 16: 3866–3889.PubMedCrossRefGoogle Scholar
  24. García-Marín, J. L., N. Sanz & C. Pla, 1998. Proportions of native and introduced brown trout in adjacent fished and unfished Spanish rivers. Conservation Biology 12: 313–319.CrossRefGoogle Scholar
  25. García-Vázquez, E., P. Morán, J. L. Martínez, J. Pérez, B. de Gaudemar & E. Beall, 2001. Alternative mating strategies in Atlantic salmon and brown trout. The Journal of Heredity 92: 146–149.PubMedCrossRefGoogle Scholar
  26. Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.CrossRefGoogle Scholar
  27. Goudet, J., 1995. Fstat version 1.2: a computer program to calculate F-statistics. Journal of Heredity 86: 485–486.Google Scholar
  28. Gowan, C. & K. D. Fausch, 2002. Why do foraging stream salmonids move during summer? Environmental Biology of Fishes 64: 139–153.CrossRefGoogle Scholar
  29. Gowan, C., M. K. Young, K. D. Faush & S. C. Riley, 1994. Restricted movement in resident stream salmonids: a paradigm lost? Canadian Journal of Fisheries Management 51: 2626–2637.CrossRefGoogle Scholar
  30. Hansen, M. M. & L. F. Jensen, 2005. Sibship within samples of brown trout (Salmo trutta) and implications for supportive breeding. Conservation Genetics 6: 297–305.CrossRefGoogle Scholar
  31. Hansen, M. M., E. E. Nielsen & K. L. D. Mensberg, 1997. The problem of sampling families rather than populations: relatedness among individuals in samples of juvenile brown trout Salmo trutta L. Molecular Ecology 6: 469–474.CrossRefGoogle Scholar
  32. Hansen, M. M., D. J. Fraser, K. Meier & K. D. Mensberg, 2009. Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and populations declines. Molecular Ecology 18: 2549–2562.PubMedCrossRefGoogle Scholar
  33. Hardy, O. P. & X. Vekemans, 2002. Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618–620.CrossRefGoogle Scholar
  34. Heggenes, J., K. H. Røed, P. E. Jorde & A. Brabrand, 2009. Dynamic micro-geographic and temporal genetic diversity in vertebrates: the case of lake-spawning populations of brown trout (Salmo trutta). Molecular Ecology 18: 1100–1111.PubMedCrossRefGoogle Scholar
  35. Höjesjö, J., F. Økland, L. F. Sundström, J. Pettersson & J. I. Johnsson, 2007. Movement and home range in relation to dominance; a telemetry study on brown trout Salmo trutta. Journal of Fish Biology 70: 257–268.CrossRefGoogle Scholar
  36. Hubisz, M. J., D. Falush, M. Stephens & J. K. Pritchard, 2009. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9: 1322–1332.PubMedCrossRefGoogle Scholar
  37. Jensen, L. F., M. M. Hansen, J. Carlsson, V. Loeschcke & K.-L. D. Mensberg, 2005. Spatial and temporal genetic differentiation and effective population size of brown trout (Salmo trutta L.) in small Danish rivers. Conservation Genetics 6: 615–621.CrossRefGoogle Scholar
  38. Jones, O. R. & J. Wang, 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources 10: 551–555.PubMedCrossRefGoogle Scholar
  39. Kitanishi, S., T. Yamamoto & S. Higashi, 2009. Microsatellite variation reveals fine-scale genetic structure of masu salmon, Oncorhynchus masou, within the Atsuta River. Ecology of Freshwater Fish 18: 65–71.CrossRefGoogle Scholar
  40. Knouft, J. H. & J. R. Spotila, 2002. Assessment of movements of resident stream brown trout, Salmo trutta L., among contiguous sections of stream. Ecology of Freshwater Fish 11: 85–92.CrossRefGoogle Scholar
  41. Laikre, L., T. Järvi, L. Johansson, S. Palm, J.-F. Rubin, C. E. Glimsäter, P. Landergren & N. Ryman, 2002. Spatial and temporal population structure of sea trout at the Island of Gotland, Sweden, delineated from mitochondrial DNA. Journal of Fish Biology 60: 49–71.CrossRefGoogle Scholar
  42. Lobón-Cerviá, J., 2000. Determinants of parr size variations within a population of brown trout Salmo trutta L. Ecology of Freshwater Fish 9: 92–102.CrossRefGoogle Scholar
  43. Lobón-Cerviá, J., 2008. Why, when and how do fish populations decline, collapse and recover? The example of brown trout (Salmo trutta) in Rio Chaballos (northwestern Spain). Freshwater Biology 54: 1149–1162.CrossRefGoogle Scholar
  44. Lobón-Cerviá, J. & E. Mortensen, 2005. Population size in stream-living juveniles of lake-migratory brown trout Salmo trutta L.: the importance of stream discharge and temperature. Ecology of Freshwater Fish 14: 394–401.CrossRefGoogle Scholar
  45. Lynch, M. & K. Ritland, 1999. Estimation of pairwise relatedness with molecular markers. Genetics 152: 1753–1766.PubMedGoogle Scholar
  46. McMeel, O. M., E. M. Hoey & A. Ferguson, 2001. Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles. Molecular Ecology 10: 29–34.PubMedCrossRefGoogle Scholar
  47. Nei, M., F. Tajima & Y. Tateno, 1983. Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution 19: 153–170.PubMedCrossRefGoogle Scholar
  48. Nicola, G. G. & A. Almodóvar, 2002. Reproductive traits of stream-dwelling brown trout Salmo trutta in contrasting neighboring rivers of central Spain. Freshwater Biology 47: 1353–1365.CrossRefGoogle Scholar
  49. Nielsen, E. E., L. A. Bach & P. Kotlicki, 2006. Hybridlab (version 1.0): a program for generating simulated hybrids from population samples. Molecular Ecology Notes 6: 971–973.CrossRefGoogle Scholar
  50. Northcote, T. G., 1992. Migration and residency in stream salmonids: some ecological considerations and evolutionary consequences. Nordic Journal of Freshwater Research 67: 5–17.Google Scholar
  51. O’Reilly, P. T., L. C. Hamilton, S. K. McConnell & J. M. Wright, 1996. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotides and tetranucleotide microsatellites. Canadian Journal of Fisheries and Aquatic Sciences 53: 2292–2298.Google Scholar
  52. Østergaard, S., M. M. Hansen, V. Loeschcke & E. E. Nielsen, 2003. Long-term temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Molecular Ecology 12: 3123–3135.PubMedCrossRefGoogle Scholar
  53. Paterson, S., S. B. Piertney, D. Knox, J. Gilbey & E. Verspoor, 2004. Characterization and PCR multiplexing of novel highly variable tetranucleotide Atlantic salmon (Salmo salar L.) microsatellites. Molecular Ecology Notes 4: 160–162.CrossRefGoogle Scholar
  54. Pearse, D. E. & E. C. Anderson, 2009. Multiple paternity increases effective population size. Molecular Ecology 18: 3124–3127.PubMedCrossRefGoogle Scholar
  55. Poteaux, C., F. Bonhomme & P. Berrebi, 1999. Microsatellite polymorphism and genetic: impact of restocking in Mediterranean brown trout (Salmo trutta L.). Heredity 82: 645–653.PubMedCrossRefGoogle Scholar
  56. Presa, P. & R. Guyomard, 1996. Conservation of microsatellites in three species of salmonids. Journal of Fish Biology 49: 1326–1329.Google Scholar
  57. Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedGoogle Scholar
  58. Raymond, M. & F. Rousset, 1995. Genepop (version 3.3): population genetics software for exact test and ecumenicism. Journal of Heredity 86: 248–249.Google Scholar
  59. Rhymer, J. M. & D. Simberloff, 1996. Extinction by hybridization and introgression. Annual Review of Ecology and Systematics 27: 83–109.CrossRefGoogle Scholar
  60. Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.CrossRefGoogle Scholar
  61. Riley, W. D., D. L. Maxwell, M. G. Pawson & J. Ives, 2009. The effects of low summer flow on wild salmon (Salmo salar), trout (Salmo trutta) and grayling (Thymallus hymallus) in a small stream. Freshwater Biology 54: 2581–2599.CrossRefGoogle Scholar
  62. Ritland, K., 2000. Marker-inferred relatedness as a tool for detecting heritability in nature. Molecular Ecology 9: 1195–1204.PubMedCrossRefGoogle Scholar
  63. Rocaspana, R., I. Cia, J. A. Arévalo, A. Escué, J. Pou & C. Pou, 2006. Estudi de la mida mitjana de la truita en les zones d’alta muntanya de Catalunya. Informe inèdit. Departament de Medi Ambient i Habitatge, Generalitat de Catalunya, Barcelona.Google Scholar
  64. Rodríguez, M. A., 2002. Restricted movement in stream fish: the paradigm is incomplete, not lost. Ecology 83: 1–13.Google Scholar
  65. Sanz, N., J. L. García-Marín & C. Pla, 2002. Managing fish populations under mosaic relationships. The case of brown trout (Salmo trutta) in peripheral Mediterranean populations. Conservation Genetics 3: 385–400.CrossRefGoogle Scholar
  66. Sanz, N., M. Cortey, C. Pla & J. L. García-Marín, 2006. Hatchery introgression blurs ancient hybridization between brown trout (Salmo trutta) lineages as indicated by complementary allozymes and mtDNA markers. Biological Conservation 130: 278–289.CrossRefGoogle Scholar
  67. Sanz, N., R. M. Araguas, R. Fernández, M. Vera & J. L. García-Marín, 2009. Efficiency of markers and methods for detecting hybrids and introgression in stocked populations. Conservation Genetics 10: 225–236.CrossRefGoogle Scholar
  68. Schneider, S., D. Roessli & L. Excoffier, 2000. Arlequin 2.0: A Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva, Switzerland.Google Scholar
  69. Serbezov, D., L. Bernatchez, E. M. Olsen & L. A. VØllestad, 2010. Mating patterns and determinants of individual reproductive success in brown trout (Salmo trutta) revealed by parentage analysis of an entire stream living populations. Molecular Ecology 19: 3193–3205.PubMedCrossRefGoogle Scholar
  70. Slettan, A., I. Olsaker & Ø. Lie, 1995. Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Animal Genetics 26: 281–282.PubMedGoogle Scholar
  71. Slettan, A., I. Olsaker & Ø. Lie, 1996. Polymorphic Atlantic salmon (Salmo salar L.) microsatellites at the SSOSL438, SSOSL439 and SSOSL444 loci. Animal Genetics 27: 57–58.PubMedCrossRefGoogle Scholar
  72. Sostoa, A., N. Caiola, D. Vinyoles, S. Sánchez, C. Franch & F. Casals, 2006. Protocol de peixos. In: Agència Catalana de l’Aigua, ed. Protocols d’avaluació de la qualitat biologica dels rius. ACA. Departament de Medi Ambient i Habitatge, Barcelona: 66–75.Google Scholar
  73. Vera, M., N. Sanz, M. M. Hansen, A. Almodóvar & J. L. García-Marín, 2010. Population and family structure of brown trout, Salmo trutta, in a Mediterranean stream. Marine & Freshwater Research 61: 676–685.CrossRefGoogle Scholar
  74. Wang, J., 2004. Sibship Reconstruction from Genetic Data with Typing Errors. Genetics 166: 1963–1979.PubMedCrossRefGoogle Scholar
  75. Wang, J., 2009. A new method for estimating effective population sizes from a single sample of multilocus genotypes. Molecular Ecology 18: 2148–2164.PubMedCrossRefGoogle Scholar
  76. Wang, J. & A. W. Santure, 2009. Parentage and sibship inference from multi-locus genotype data under polygamy. Genetics 181: 1579–1594.PubMedCrossRefGoogle Scholar
  77. Waples, R. S., 2006. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics 7: 167–184.CrossRefGoogle Scholar
  78. Waples, R. S. & C. Do, 2007. LDNE: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources 8: 753–756.CrossRefGoogle Scholar
  79. Willing, E., P. Bentzen, O. Van, M. Hoffmann, J. Cable, F. Breden, D. Weigel & C. Dreyer, 2010. Genome-wide single nucleotide polymorphisms reveal population history and adaptive divergence in wild guppies. Molecular Ecology 19: 968–984.PubMedCrossRefGoogle Scholar
  80. Wilson, G. A. & B. Rannala, 2003. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163: 1177–1191.PubMedGoogle Scholar
  81. Young, R. G., J. Wilkinson, J. Hay & J. W. Hayes, 2010. Movement and mortality of adult brown trout in the Montupiko River, New Zealand: effects of water temperature, flow, and flooding. Transactions of the American Fisheries Society 139: 137–146.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Núria Sanz
    • 1
    Email author
  • Raquel Fernández-Cebrián
    • 1
  • Frederic Casals
    • 2
  • Rosa M. Araguas
    • 1
  • José Luis García-Marín
    • 1
  1. 1.Laboratori d’Ictiologia GenèticaUniversitat de GironaGironaSpain
  2. 2.Secció de Fauna Silvestre, Departament de Producció Animal ETSEAUniversitat de LleidaLeridaSpain

Personalised recommendations