, Volume 669, Issue 1, pp 227–236 | Cite as

Physical and chemical properties determine zebra mussel invasion success in lakes

  • Rahmat NaddafiEmail author
  • Thorsten Blenckner
  • Peter Eklöv
  • Kurt Pettersson
Primary Research Paper


To address the question whether the abundance of an invasive species can be explained by physical and chemical properties of the invaded ecosystems, we gathered density data of invasive zebra mussels and the physical and chemical data of ecosystems they invaded. We assembled published data from 55 European and 13 North American lakes and developed a model for zebra mussel density using a generalized additive model (GAM) approach. Our model revealed that the joint effect of surface area, total phosphorus and calcium concentrations explained 62% of the variation in Dreissena density. Our study indicates that large and less productive North American lakes can support larger local populations of zebra mussels. Our results suggest that the proliferation of an exotic species in an area can partially be explained by physical and chemical properties of the recipient environment.


Invasion success Zebra mussel Density Generalized additive model Physical and chemical properties North American and European lakes 



We are grateful to Tomasz Muller, Marcin Czarnołęski, Anna Stańczykowska, Peter Stangel, Frances Lucy, Kristen Holeck, Lyubov E. Burlakova, Alexander Y. Karatayev, James Haynes, Ruurd Noordhuis, Chuck Madenjian, Guy Fleischer, Ellen Marsden, Robert Douglas Hunter, Miguel Dionisio Pires, Joseph C. Makarewicz and Joe Ho for help in providing the data. We also thank Drs. Lars Rudstam, Luis M. Bini and Edward Mills for their many constructive comments that improved this paper. This research was funded by The Swedish Research Council and the Malméns Foundation to Rahmat Naddafi and The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning to Peter Eklöv.

Supplementary material

10750_2011_689_MOESM1_ESM.doc (266 kb)
Supplementary material 1 (DOC 267 kb)


  1. Burlakova, L. E., A. Y. Karatayev & D. K. Padilla, 2006. Changes in the distribution and abundance of Dreissena polymorpha within lakes through time. Hydrobiologia 571: 133–146.CrossRefGoogle Scholar
  2. Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed. Springer-Verlag, New York.Google Scholar
  3. Colautti, R. I. & H. J. MacIsaac, 2004. A neutral terminology to define invasive species. Diversity and Distribution 10: 135–141.CrossRefGoogle Scholar
  4. Colautti, R. I., A. Ricciardi, I. A. Grigorovich & H. J. MacIsaac, 2004. Is invasion success explained by the enemy release hypothesis? Ecology Letters 7: 721–733.CrossRefGoogle Scholar
  5. Colautti, R. I., I. A. Grigorovich & H. J. MacIsaac, 2006. Propagule pressure: a null model for biological invasions. Biological Invasions 8: 1023–1037.CrossRefGoogle Scholar
  6. Elton, C. S., 1958. The Ecology of Invasion by Animals and Plants. Methuen, London.Google Scholar
  7. Freeman, A. S. & J. E. Byers, 2006. Divergent induced responses to an invasive predator in marine mussel populations. Science 313: 831–833.PubMedCrossRefGoogle Scholar
  8. Goedkoop, W., R. Naddafi & U. Grandin, 2011. Retention of N and P by zebra mussels (Dreissena polymorpha Pallas) and its quantitative role in the nutrient budget of eutrophic Lake Ekoln, Sweden. Biological Invasions. doi: 10.1007/s10530-011-9950-9.
  9. Graham, M. H., 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84: 2809–2815.CrossRefGoogle Scholar
  10. Hallstan, S., U. Grandin & W. Goedkoop, 2010. Current and modeled potential distribution of the zebra mussel (Dreissena polymorpha) in Sweden. Biological Invasions 12: 285–296.CrossRefGoogle Scholar
  11. Hastie, T. J. & R. J. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall, London.Google Scholar
  12. Havel, J. E., J. B. Shurin & J. R. Jones, 2005. Environmental limits to a rapidly spreading exotic cladoceran. Ecoscience 12: 376–385.CrossRefGoogle Scholar
  13. Hincks, S. S. & G. L. Mackie, 1997. Effects of pH, calcium, alkalinity, hardness, and chlorophyll on the survival, growth, and reproductive success of zebra mussel (Dreissena polymorpha) in Ontario lakes. Canadian Journal of Fisheries and Aquatic Science 54: 2049–2057.CrossRefGoogle Scholar
  14. Hunter, R. D. & K. A. Simons, 2004. Dreissenids in Lake St. Clair in 2001: evidence for population regulation. Journal of Great Lakes Research 30: 528–537.CrossRefGoogle Scholar
  15. Jeschke, J. M. & D. L. Strayer, 2008. Usefulness of bioclimatic models for studying climate change and invasive species. In Ostfeld, R. S. & W. H. Schlesinger (eds), The Year in Ecology and Conservation Biology, Annals of the New York Academy of Sciences, Vol. 1134. Blackwell Scientific Publishing, Boston: 1–24.Google Scholar
  16. Johnson, L. E., A. Ricciardi & J. T. Carlton, 2001. Overland dispersal of aquatic invasive species: a risk assessment of transient recreational boating. Ecological Applications 11: 1789–1799.CrossRefGoogle Scholar
  17. Jones, L. A. & A. Ricciardi, 2005. Influence of physical and chemical factors on the distribution and biomass of invasive mussels (Dreissena polymorpha and Dreissena bugensis) in the St. Lawrence River. Canadian Journal of Fisheries and Aquatic Sciences 62: 1953–1962.CrossRefGoogle Scholar
  18. Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 1997. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. Journal of Shellfish Research 16: 187–203.Google Scholar
  19. Karatayev, A. Y., L. E. Burlakova, D. P. Molloy & L. K. Volkova, 2000. Endosymbionts of Dreissena polymorpha (Pallas) in Belarus. International Review of Hydrobiology 85: 543–559.CrossRefGoogle Scholar
  20. Kennedy, T. A., S. Naeem, K. M. Howe, J. M. H. Knops, D. Tilman & P. Relch, 2002. Biodiversity as a barrier to ecological invasion. Nature 417: 636–638.PubMedCrossRefGoogle Scholar
  21. Kerney, M. P. & B. S. Morton, 1970. The distribution of Dreissena polymorpha in Britain. Journal of Conchology 27: 97–100.Google Scholar
  22. Kolar, C. & D. M. Lodge, 2001. Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution 16: 199–204.PubMedCrossRefGoogle Scholar
  23. Kornobis, S., 1977. Ecology of Dreissena polymorpha (Pal.) (Dreissena: Bivalvia) in lakes receiving heated water discharges. Polskie Archiwum Hydrobiologii 24: 531–545.Google Scholar
  24. Kraft, C. E. & L. E. Johnson, 2000. Regional differences in rates and patterns of North American inland lake invasions by zebra mussels (Dreissena polymorpha). Canadian Journal of Fisheries and Aquatic Science 5: 993–1001.CrossRefGoogle Scholar
  25. Levine, J. M. & C. M. D’Antonio, 1999. Elton revisited: a review of evidence linking diversity and invisibility. Oikos 87: 15–26.CrossRefGoogle Scholar
  26. López-Moreno, J. I. & D. Nogués-Bravo, 2005. A generalized additive model for the spatial distribution of snowpack in the Spanish Pyrenees. Hydrological Processes 19: 3167–3176.CrossRefGoogle Scholar
  27. Lucy, F., M. Sullivan & D. Minchin, 2005. Nutrient levels and the zebra mussel population in Lough Key. ERTDI Report Series No. 34. EPA, Wexford.Google Scholar
  28. MacIsaac, H. J., 1996. Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. American Zoologist 36: 287–299.Google Scholar
  29. Mackie, G. L. & D. W. Schloesser, 1996. Comparative biology of zebra mussels in Europe and North America: an overview. American Zoologist 36: 244–258.Google Scholar
  30. Marsden, J. E., A. P. Spidle & B. May, 1996. Review of genetic studies of Dreissena spp. American Zoologist 36: 259–270.Google Scholar
  31. McMahon, R. F., 1996. The physiological ecology of the zebra mussel, Dreissena polymorpha, in North America and Europe. American Zoologist 36: 339–363.Google Scholar
  32. Mellina, E. & J. B. Rasmussen, 1994. Patterns in the distribution and abundance of zebra mussel (Dreissena polymorpha) in rivers and lakes in relation to substrate and other physical and chemical factors. Canadian Journal of Fisheries and Aquatic Science 51: 1024–1036.CrossRefGoogle Scholar
  33. Mellina, E., J. B. Rasmussen & E. L. Mills, 1995. Impact of zebra mussel (Dreissena polymorpha) on phosphorus cycling and chlorophyll in lakes. Canadian Journal of Fisheries and Aquatic Sciences 52: 2553–2573.CrossRefGoogle Scholar
  34. Naddafi, R., P. Eklöv & K. Pettersson, 2007a. Non-lethal predator effects on the feeding rate and prey selection of the exotic zebra mussel Dreissena polymorpha. Oikos 116: 1289–1298.CrossRefGoogle Scholar
  35. Naddafi, R., K. Pettersson & P. Eklöv, 2007b. The effect of seasonal variation in selective feeding by zebra mussels (Dreissena polymorpha) on phytoplankton community composition. Freshwater Biology 52: 823–842.CrossRefGoogle Scholar
  36. Naddafi, R., K. Pettersson & P. Eklöv, 2008. Effects of the zebra mussel, an exotic freshwater species, on seston stoichiometry. Limnology and Oceanography 53: 1973–1987.CrossRefGoogle Scholar
  37. Naddafi, R., P. Eklöv & K. Pettersson, 2009. Stoichiometric constraints do not limit successful invaders: zebra mussels in Swedish lakes. PLoS ONE 4: e5345.PubMedCrossRefGoogle Scholar
  38. Naddafi, R., K. Pettersson & P. Eklöv, 2010. Predation and physical environment structure the density and population size structure of zebra mussels. Journal of the North American Benthological Society 29: 444–453.CrossRefGoogle Scholar
  39. Pearce, J. & S. Ferrier, 2000. An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecological Modelling 128: 127–147.CrossRefGoogle Scholar
  40. Quinn, G. P. & M. J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.Google Scholar
  41. Ram, J. L. & R. F. McMahon, 1996. Introduction: the biology, ecology, and physiology of zebra mussels. American Zoologist 36: 239–243.Google Scholar
  42. Ramcharan, C. W., D. K. Padilla & S. I. Dodson, 1992a. Models to predict potential occurrence and density of the zebra mussel, Dreissena polymorpha. Canadian Journal of Fisheries and Aquatic Science 49: 2611–2620.CrossRefGoogle Scholar
  43. Ramcharan, C. W., D. K. Padilla & S. I. Dodson, 1992b. A multivariate model for predicting population fluctuations of Dreissena polymorpha in North American Lakes. Canadian Journal of Fisheries and Aquatic Science 49: 150–158.CrossRefGoogle Scholar
  44. Ricciardi, A., 2001. Facilitative interactions among aquatic invaders: is an “invasional meltdown” occurring in the Great Lakes? Canadian Journal of Fisheries and Aquatic Sciences 58: 2513–2525.CrossRefGoogle Scholar
  45. Ricciardi, A., R. J. Neves & J. B. Rasmussen, 1998. Impending extinctions of North American freshwater mussels (Unionoida) following the Zebra mussel (Dreissena polymorpha) invasion. Journal of Animal Ecology 67: 613–619.CrossRefGoogle Scholar
  46. Shurin, J. B., 2000. Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81: 3074–3086.CrossRefGoogle Scholar
  47. Simberloff, D. & B. Von Holle, 1999. Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions 1: 21–32.CrossRefGoogle Scholar
  48. Sprung, M., 1993. The other life: an account of present knowledge of the larval phase of Dreissena polymorpha. In Nalepa, T. F. & D. W. S. Schloesser (eds), Zebra Mussels: Biology, Impacts, and Control. Lewis Publishers, Boca Raton, FL: 39–53.Google Scholar
  49. Stańczykowska, A., 1964. On the relationship between abundance, aggregations and “condition” of Dreissena polymorpha Pall. in 36 Mazurian lakes. Ekologiya Polska Series A 12: 653–690.Google Scholar
  50. Stańczykowska, A., 1984. The effect of various phosphorus loadings on the occurrence of Dreissena polymorpha (Pall.). Limnologica 15: 535–539.Google Scholar
  51. Stańczykowska, A. & K. Lewandowski, 1993. Thirty years of studies of Dreissena polymorpha ecology in Mazurian Lakes of Northeastern Poland. In Nalepa, T. F. & D. W. Schloesser (eds), Zebra Mussels: Biology, Impacts, and Control. Lewis Publishers, Ann Arbor, MI: 3–33.Google Scholar
  52. Stańczykowska, A., E. Jurkiewicz-Karnowska & K. Lewandowski, 1983. Ecological characteristics of lakes in north-eastern Poland versus their trophic gradient. X. Occurrence of molluscs in 42 lakes. Ekologiya Polska 31: 459–479.Google Scholar
  53. Stepien, C. A., C. D. Taylor & K. A. Dabrowska, 2002. Genetic variability and phylogeographical patterns of a nonindigenous species invasion: a comparison of exotic vs. native zebra and quagga mussel populations. Journal of Evolutionary Biology 15: 314–328.CrossRefGoogle Scholar
  54. Strayer, D. L., 1991. The projected distribution of the zebra mussel, Dreissena polymorpha, in North America. Canadian Journal of Fisheries and Aquatic Sciences 48: 1389–1395.CrossRefGoogle Scholar
  55. Strayer, D. L., J. Powell, P. Ambrose, L. C. Smith, M. L. Pace & D. T. Fischer, 1996. Arrival, spread, and early dynamics of a zebra mussel (Dreissena polymorpha) population in the Hudson River Estuary. Canadian Journal of Fisheries and Aquatic Science 53: 1143–1149.Google Scholar
  56. Strayer, D. L., V. T. Eviner, J. M. Jeschke & M. L. Pace, 2006. Understanding the long-term effects of species invasions. Trends in Ecology and Evolution 21: 645–651.PubMedCrossRefGoogle Scholar
  57. Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. T. Holeck, J. R. Liebig, I. A. Grigorovich & H. Ojaveer, 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Science 59: 1209–1228.CrossRefGoogle Scholar
  58. Ward, J. M. & A. Ricciardi, 2007. Impacts of Dreissena invasions on benthic macroinvertebrate communities: a metaanalysis. Diversity and Distribution 13: 155–165.CrossRefGoogle Scholar
  59. Whittier, T. R., P. L. Ringold, A. T. Herlihy & S. M. Pierson, 2008. A calcium-based invasion risk assessment for zebra and quagga mussels (Dreissena spp.). Frontiers in Ecology and the Environment 6: 180–184.CrossRefGoogle Scholar
  60. Wilson, A. E. & O. Sarnelle, 2002. Relationship between zebra mussel biomass and total phosphorus in European and North American lakes. Archiv für Hydrobiologie 153: 339–351.Google Scholar
  61. Zhu, B., D. G. Fitzgerald, C. M. Mayer, L. G. Rudstam & E. L. Mills, 2006. Alteration of ecosystem function by zebra mussels in Oneida Lake: impacts on submerged macrophytes. Ecosystems 9: 1017–1028.CrossRefGoogle Scholar
  62. Zuur, A. F., E. N. Ieno & G. M. Smith, 2007. Analysing Ecological Data. Springer-Verlag, New York: 685.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Rahmat Naddafi
    • 1
    • 2
    Email author
  • Thorsten Blenckner
    • 3
  • Peter Eklöv
    • 4
  • Kurt Pettersson
    • 1
  1. 1.Department of Ecology and Evolution/Erken Laboratory, Evolutionary Biology CentreUppsala UniversityNorrtäljeSweden
  2. 2.Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
  3. 3.Baltic Nest Institute, Stockholm Resilience CentreStockholm UniversityStockholmSweden
  4. 4.Department of Ecology and Evolution/Limnology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden

Personalised recommendations