, 670:23 | Cite as

Variability in behaviour of four fish species attracted to baited underwater cameras in the North Sea

  • Iñigo MartinezEmail author
  • Emma G. Jones
  • Sarah L. Davie
  • Francis C. Neat
  • Ben D. Wigham
  • Imants G. Priede


Baited underwater camera (BUC) systems to estimate demersal fish abundance are becoming increasingly considered as an alternative to traditional survey methods, particularly in environments that contain sensitive habitats or protected species. Based on 27 replicate deployments of BUCs at 100 m depth in the northern North Sea, in rank order of abundance, hagfish (Myxine glutinosa), flatfish mainly dabs (Limanda limanda), whiting (Merlangius merlangus) and haddock (Melanogramus aeglefinus) were observed consistently at baits. Higher maximum numbers (N max) occurred during daytime in all species with the most significant effect in flatfish, 18 in daytime and 5 at night-time. Bottom current had no significant effect on numbers of whiting, flatfish or haddock. The N max of hagfish was strongly related to current speed in a non-linear way with an increase in numbers up to 10 cm s−1 and then decrease in N max at higher water speeds. Understanding and accounting for such species-specific influences is important in the design of long term monitoring surveys using baited cameras.


Baited camera Current Demersal fish North Sea Fisheries 



The authors gratefully acknowledge the financial and logistical support of SERPENT partners NEXEN Petroleum Ltd., in particular to David Hutchinson and Karen Yorke. The assistance of the masters and crews from all vessels involved in the project is gratefully acknowledged in addition to the dedicated support of Viking Offshore (Aberdeen). Dr Dave Reid and Iain Penny, Marine Scotland-Marine Laboratory (formerly FRS) and Dr. Alan Jamieson (Oceanlab, University of Aberdeen) are thanked for their contribution and technical assistance to this project. Iñigo M. was supported during the research period through a Marie Curie Early Stage Research Grant (ECOSUMMER project. 020501-2).


  1. Adlerstein, S. & S. Ehrich, 2002. Effect of deviations from target speed and of time of day on catch rates of some abundant species under North Sea International Bottom Trawl Survey protocol conditions. ICES Journal Marine Science 59: 594–603.CrossRefGoogle Scholar
  2. Aglen, A., A. Engas, I. Huse, K. Michalsen & B. K. Stensholt, 1999. How vertical fish distribution may affect survey results. ICES Journal Marine Science 56: 345–360.CrossRefGoogle Scholar
  3. Armstrong, J. D., P. M. Bagley & I. G. Priede, 1992. Photographic and acoustic tracking observations of the behaviour of the grenadier, Coryphaenoides (Nematonurus) armatus, the eel, Synaphobranchus bathybius, and other abyssal demersal fish in the North Atlantic Ocean. Marine Biology 112: 535–544.CrossRefGoogle Scholar
  4. Bossert, W. H. & E. O. Wilson, 1962. The analysis of olfactory communication among animals. Journal of Experimental Marine Biology and Ecology 5: 443–469.Google Scholar
  5. Breen, M., J. Dyson, F. G. O’Neill, E. G. Jones & M. Haigh, 2004. Swimming endurance of haddock (Melanogrammus aeglefinus L.) at prolonged and sustained swimming speeds, and its role in their capture by towed fishing gears. ICES Journal of Marine Science 61: 1071–1079.CrossRefGoogle Scholar
  6. Bromley, P. J., T. Watson & J. R. G. Hislop, 1997. Diel feeding patterns and the development of food webs in pelagic 0-group cod (Gadus morhua L.), haddock (Melanogrammus aeglefinus L.), whiting (Merlangius merlangus L.), saithe (Pollachius virens L.), and Norway pout (Trisopterus esmarkii Nilsson) in the northern North Sea. ICES Journal Marine Science 54: 846–853.CrossRefGoogle Scholar
  7. Cappo, M., P. Speare & G. De’Ath, 2004. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. Journal of Experimental Marine Biology and Ecology 302: 123–152.CrossRefGoogle Scholar
  8. Carter, C. G., D. J. Grove & D. M. Carter, 1991. Trophic resource partitioning between two coexisting flatfish species off the north coast of Anglesey. North Wales Netherlands Journal of Sea Research 27: 325–335.CrossRefGoogle Scholar
  9. de Groot, S. J., 1969. Digestive system and sensorial factors in relation to the feeding behaviour of flatfish (Pleuronectiformes). ICES Journal Marine Science 32: 385–394.CrossRefGoogle Scholar
  10. Ellis, D. E. & E. E. Demartini, 1994. Evaluation of a video camera technique for indexing abundances of juvenile pink snapper, Pristipomoides filamentosus, and other Hawaiian insular shelf fishes. Fishery Bulletin 93: 67–77.Google Scholar
  11. Engås, A. & S. Løkkeborg, 1994. Abundance estimation using bottom gillnet and longline—the role of fish behaviour. In Fernö, A. & S. Olsen (eds), Marine Fish Behaviour in Capture and Abundance Estimation. Fishing News Books, Oxford: 134–165.Google Scholar
  12. Engås, A. & A. V. Soldal, 1992. Diurnal variations in bottom trawl catch rates of cod and haddock and their influence on abundance indices. ICES Journal of Marine Science 49: 89–95.CrossRefGoogle Scholar
  13. Farnsworth, K. D., U. H. Thygesen, S. Ditlevsen & N. J. King, 2007. How to estimate scavenger fish abundance using baited camera data. Marine Ecology Progress Series 350: 223–234.CrossRefGoogle Scholar
  14. Fernö, A., P. Solemdal & S. Tilseth, 1986. Field studies on the behaviour of whiting (Gadus merlangus L.) towards baited hooks. Fiskeridirektoratets Skrifter Serie Havundersøkelser 18: 83–95.Google Scholar
  15. Foss, G., 1968. Behaviour of Myxine glutinosa L. in natural habitat: investigation of the mud biotype by a suction technique. Sarsia 31: 1–13.Google Scholar
  16. Gibson, R. N., 1973. The intertidal movements and distribution of young fish on a sandy beach with special reference to the plaice (Pleuronectes platessa L.). Journal of Experimental Marine Biology and Ecology 12: 79–102.CrossRefGoogle Scholar
  17. Greenstreet, S. P. R., A. D. Bryant, N. Broekhuizen, S. J. Hall & M. R. Heath, 1997. Seasonal variation in the consumption of food by fish in the North Sea and implications for food web dynamics. ICES Journal Marine Science 54: 243–266.CrossRefGoogle Scholar
  18. Harvey, E. S., M. Cappo, J. J. Butler, N. Hall & G. A. Kendrick, 2007. Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Marine Ecology Progress Series 350: 245–254.CrossRefGoogle Scholar
  19. He, P. G., 1991. Swimming endurance of the atlantic cod, Gadus morhua L, at low-temperatures. Fisheries Research 12: 65–73.CrossRefGoogle Scholar
  20. He, P. & C. S. Wardle, 1988. Endurance at intermediate swimming speeds of Atlantic mackerel, Scomber scombrus L., herring, Clupea harengus L., and saithe, Pollachius virens L. Journal of Fish Biology 33: 255–266.CrossRefGoogle Scholar
  21. Heagney, E. C., T. P. Lynch, R. C. Babcock & I. M. Suthers, 2007. Pelagic fish assemblages assessed using mid-water baited video: Standardising fish counts using bait plume size. Marine Ecology Progress Series 350: 255–266.CrossRefGoogle Scholar
  22. Hislop, J. R. G., A. P. Robb, M. A. Bell & D. W. Armstrong, 1991. The diet and food consumption of whiting (Merlangius merlangus) in the North Sea. ICES Journal of Marine Science 48: 139–156.CrossRefGoogle Scholar
  23. ICES, 2009. Report of the ICES Advisory Committee 2009. ICES Advice, 2009. Book 6, 236.Google Scholar
  24. Jamieson, A. J. & P. Bagley, 2005. Biodiversity survey techniques: ROBIO and DOBO landers. Sea Technology 46: 52–54.Google Scholar
  25. Jones, E. G., A. Tselepides, P. M. Bagley, M. A. Collins & I. G. Priede, 2003. Bathymetric distribution of some benthic and benthopelagic species attracted to baited cameras and traps in the deep eastern Mediterranean. Marine Ecology Progress Series 251: 75–86.CrossRefGoogle Scholar
  26. Kaiser, M. & K. Ramsay, 1997. Opportunistic feeding by dabs within areas of trawl disturbance: possible implications for increased survival. Marine Ecology Progress Series 152: 307–310.CrossRefGoogle Scholar
  27. Knust, R., 1986. Food selection of the dab (Limanda limanda (L.)): diel and seasonal changes. ICES C.M. 1986/G: 63.Google Scholar
  28. Laurel, B. J., C. H. Ryer, B. Knoth & A. W. Stoner, 2009. Temporal and ontogenetic shifts in habitat use of juvenile Pacific cod (Gadus macrocephalus). Journal of Experimental Marine Biology and Ecology 377: 28–35.CrossRefGoogle Scholar
  29. Løkkeborg, S., 1990. Rate of release of potential feeding attractants from natural and artificial bait. Fisheries Research 8: 253–261.CrossRefGoogle Scholar
  30. Løkkeborg, S. & T. Pina, 1997. Effects of setting time, setting direction and soak time on longline catch rates. Fisheries Research 32: 213–222.CrossRefGoogle Scholar
  31. Løkkeborg, S., Å. Bjordal & A. Fernö, 1989. Responses of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) to baited hooks in the natural environment. Canadian Journal Fisheries and Aquatic Sciences 46: 1478–1483.CrossRefGoogle Scholar
  32. Løkkeborg, S., B. Olla, W. Pearson & M. Davis, 1995. Behavioural responses of sablefish, Anoplopoma fimbria, to bait odour. Journal of Fish Biology 46: 142–155.CrossRefGoogle Scholar
  33. McQuinn, I. H., L. Gendron & J. H. Himmelman, 1988. Area of attraction and effective area fished by a whelk (Buccinum undatum) trap under variable conditions. Canadian Journal of Fisheries and Aquatic Sciences 45: 2054–2060.CrossRefGoogle Scholar
  34. Mergardt, N. & A. Temming, 1997. Diel pattern of food intake in whiting (Merlangius merlangus) investigated from the weight of partly digested food particles in the stomach and laboratory determined particle decay functions. ICES Journal of Marine Science 54: 226–242.CrossRefGoogle Scholar
  35. Olsen, S. & T. Laevastu, 1983. Factors affecting catch of long lines, evaluated with a simulation model of long line fishing. Northwest and Alaska Fisheries Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115-0070.Google Scholar
  36. Onsrud, M. S. R., S. Kaartvedt & M. T. Breien, 2005. In situ swimming speed and swimming behaviour of fish feeding on the krill Meganyctiphanes norvegica. Canadian Journal of Fisheries and Aquatic Sciences 62: 1822–1832.CrossRefGoogle Scholar
  37. Patterson, K. R., 1985. The trophic ecology of whiting (Merlangius merlangus) in the Irish Sea and its significance to the Manx herring stock. ICES Journal Marine Science 42: 152–161.CrossRefGoogle Scholar
  38. Pedersen, J., 2000. Food consumption and daily feeding periodicity: comparison between pelagic and demersal whiting in the North Sea. Journal of Fish Biology 57: 402–416.CrossRefGoogle Scholar
  39. Petrakis, G., D. N. MacLennan & A. W. Newton, 2001. Day-night and depth effects on catch rates during trawl surveys in the North Sea. ICES Journal of Marine Science 58: 50–60.CrossRefGoogle Scholar
  40. Priede, I. G. & P. M. Bagley, 2001. In situ studies on deep sea demersal fishes using autonomous unmanned lander platforms. Oceanography and Marine Biology 38: 357–392.Google Scholar
  41. Priede, I. G. & N. R. Merrett, 1996. Estimation of abundance of abyssal demersal fishes; a comparison of data from trawls and baited cameras. Journal of Fish Biology 49: 207–216.CrossRefGoogle Scholar
  42. Priede, I. G., K. L. Smith Jr. & J. D. Armstrong, 1990. Foraging behaviour of abyssal grenadier fish: inferences from acoustic tagging and tracking in the North Pacific Ocean. Deep-Sea Research 37: 81–101.CrossRefGoogle Scholar
  43. Priede, I. G., A. R. Deary, D. M. Bailey & K. L. Smith Jr., 2003. Low activity and seasonal change in population size structure of grenadiers in the oligotrophic central North Pacific Ocean. Journal of Fish Biology 63: 187–196.CrossRefGoogle Scholar
  44. Steinhausen, M., J. Steffensen & N. Andersen, 2005. Tail beat frequency as a predictor of swimming speed and oxygen consumption of saithe (Pollachius virens) and whiting (Merlangius merlangus) during forced swimming. Marine Biology 148: 197–204.CrossRefGoogle Scholar
  45. Stevens, G. A., 1930. Bottom fauna and the food of fishes. Journal of the Marine Biological Association of the UK 16: 677–706.CrossRefGoogle Scholar
  46. Stobart, B., J. A. Garcia-Charton, C. Espejo, E. Rochel, R. Goni, O. Renones, A. Herrero, R. Crec’hriou, S. Polti, C. Marcos, S. Planes & A. Perez-Ruzafa, 2007. A baited underwater video technique to assess shallow-water Mediterranean fish assemblages: methodological evaluation. Journal of Experimental Marine Biology and Ecology 345: 158–174.CrossRefGoogle Scholar
  47. Stoner, A. W., 2003. Hunger and light level alter response to bait by Pacific halibut: laboratory analysis of detection, location and attack. Journal of Fish Biology 62: 1176–1193.CrossRefGoogle Scholar
  48. Stoner, A. W., 2004. Effects of environmental variables on fish feeding ecology: implications for the performance of baited fishing gear and stock assessment. Journal of Fish Biology 65: 1445–1471.CrossRefGoogle Scholar
  49. Stoner, A. W., B. J. Laurel & T. P. Hurst, 2008. Using a baited camera to assess relative abundance of juvenile Pacific cod: field and laboratory trials. Journal of Experimental Marine Biology and Ecology 354: 202–211.CrossRefGoogle Scholar
  50. Straham, R., 1963. The behaviour of the myxinoids. Acta Zoologica 44: 73–102.CrossRefGoogle Scholar
  51. Temming, A., S. Gotz, N. Mergardt & S. Ehrich, 2004. Predation of whiting and haddock on sandeel: aggregative response, competition and diel periodicity. Journal of Fish Biology 64: 1351–1372.CrossRefGoogle Scholar
  52. Weihs, D., 1987. Hydromechanics of fish migration in variable environments. American Fisheries Society Symposium 1: 254–261.Google Scholar
  53. Whitehead, P. J. P., M. L. Bauchot, J.-C. Hureau, J. Nielsen & E. Tortonese, 1984. Fishes of the North-Eastern Atlantic and the Mediterranean. UNESCO, Paris: 1473.Google Scholar
  54. Wieland, K., L. Fosdager, R. Holst & A. Jarre-Teichmann, 1998. Spatial distribution of estimates of juvenile (age 1 and 2) whiting and cod in the North Sea. ICES CM 1998/J: 7.Google Scholar
  55. Willis, T. J., R. B. Millar & R. C. Babcock, 2000. Detection of spatial variability in relative density of fishes: Comparison of visual census, angling, and baited underwater video. Marine Ecology Progress Series 198: 249–260.CrossRefGoogle Scholar
  56. Willis, T. J., R. B. Millar & R. C. Babcock, 2003. Protection of exploited fish in temperate regions: high density and biomass of snapper Pagrus auratus (Sparidae) in northern New Zealand marine reserves. Journal of Applied Ecology 40: 214–227.CrossRefGoogle Scholar
  57. Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Iñigo Martinez
    • 1
    Email author
  • Emma G. Jones
    • 1
    • 2
  • Sarah L. Davie
    • 1
    • 4
  • Francis C. Neat
    • 1
  • Ben D. Wigham
    • 3
  • Imants G. Priede
    • 5
  1. 1.Marine Scotland-Science, Marine LaboratoryAberdeenUK
  2. 2.National Institute of Water & Atmospheric Research Ltd. (NIWA)Newmarket AucklandNew Zealand
  3. 3.Dove Marine LaboratoryNewcastle UniversityNorth ShieldsUK
  4. 4.Marine InstituteCo. GalwayIreland
  5. 5.University of AberdeenAberdeenUK

Personalised recommendations