Hydrobiologia

, 669:143

Leaf litter breakdown in Mediterranean streams: effect of dissolved inorganic nutrients

  • Margarita Menéndez
  • Enrique Descals
  • Tecla Riera
  • Oscar Moya
Primary research paper

Abstract

Agricultural runoff and urban activities can increase the inputs of nitrogen (N) and phosphorus (P), into headwater streams, leading to eutrophication and thus substantially affecting the structure and functions of benthic communities. A high P concentration in water stimulates the activity of heterotrophic microorganisms associated with leaf litter and, hence, influences decomposition rates and the availability of detrital resources for macroinvertebrates. Litter breakdown of alder (Alnus glutinosa) leaves enclosed in coarse mesh bags was studied in five low-order Mediterranean streams with different trophic status defined by their soluble reactive phosphorus (SRP) concentrations. Decomposition rates differed significantly between these streams and increased with the eutrophication gradient, but these differences were not always related to the availability of P in water. Leaf mass loss was directly correlated with shredder density, but macroinvertebrate density and diversity were not related to P availability in water, and ammonium concentration had a negative effect on macroinvertebrate diversity and shredder relative abundance. A significantly positive effect of nitrate concentration in water on aquatic hyphomycete sporulation rates was observed, but there also was a negative effect of % ammonium on dissolved inorganic nitrogen (DIN). The predominantly available ionic form of DIN could thus affect the structure of the aquatic hyphomycete community. These results suggest that the response of litter decomposition to eutrophication in forested headwater streams is strongly influenced by local stream characteristics and by the nature of nutrient pollution.

Keywords

Decomposition Nitrogen Phosphorus Aquatic hyphomycetes Invertebrates Mediterranean streams 

References

  1. Allan, D. J., 1995. Stream Ecology. Structure and Function of Running Waters. Chapman and Hall, London. 388.Google Scholar
  2. Allen, S. E. H. M., J. A. Grimshaw, J. A. Parkinson & C. Quarmby, 1974. Chemical Analysis and Ecological Materials. Blackwell, Oxford.Google Scholar
  3. APHA, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington.Google Scholar
  4. Baldy, V., V. Gobert, F. Guerold, E. Chauvet, D. Lambrigot & J.-Y. Charcosset, 2007. Leaf litter breakdown budgets in streams of various trophic status: effects of dissolved inorganic nutrients on microorganisms and invertebrates. Freshwater Biology 52: 1322–1335.CrossRefGoogle Scholar
  5. Benstead, J. P., L. A. Deegan, B. J. Peterson, A. D. Huryn, W. B. Bowden, K. Suberkropp, K. M. Buzby, A. C. Green & J. A. Vacca, 2005. Responses of a breaded Arctic stream to short-term N and P fertilisation. Freshwater Biology 50: 277–290.CrossRefGoogle Scholar
  6. Bergfur, J., R. K. Johnson, L. Sandin, W. Goedkoop & K. Nygren, 2007. Effects of nutrient enrichment on boreal streams: invertebrates, fungi and leaf-litter breakdown. Freshwater Biology 52: 1618–1633.CrossRefGoogle Scholar
  7. Bonada, N., M. Rieradevall, H. Dallas, J. Davies, J. Day, R. Figueroa, V. H. Resh & N. Prat, 2008. Multi-scale assessment of macroinvertebrate richness and composition in Mediterranean-climate rivers. Freshwater Biology 53: 772–788.CrossRefGoogle Scholar
  8. Boulton, A. J., 1991. Eucalypt leaf decomposition in an intermittent stream in south-eastern Australia. Hydrobiologia 211: 123–136.CrossRefGoogle Scholar
  9. Boulton, A. J. & P. S. A. Lake, 1992. The ecology of two intermittent streams in Victoria, Australia. II. Comparisons of faunal composition between habitats, rivers and years. Freshwater Biology 27: 99–121.CrossRefGoogle Scholar
  10. Bunn, S. E., 1988. Processing of leaf litter in two northern jarrah forest stream, Western Australia: II. The role of macroinvertebrates and the influence of soluble polyphenols and inorganic sediment. Hydrobiologia 162: 211–223.CrossRefGoogle Scholar
  11. Chauvet, E., 1987. Changes in the chemical composition of alder, poplar and willow leaves during decomposition in a river. Hydrobiologia 148: 35–44.CrossRefGoogle Scholar
  12. Dodds, W. K., 2006. Eutrophication and trophic state in rivers and streams. Limnology and Oceanography 51: 671–680.CrossRefGoogle Scholar
  13. Duarte, S., C. Pascoal, F. Garabétian, F. Cássio & J.-Y. Charcosset, 2009. Microbial communities are mainly structured by trophic status in circumneutral and alkaline streams. Applied and Environmental Microbiology 75: 6121–6211.CrossRefGoogle Scholar
  14. Elwood, J. W., J. D. Newbold, A. F. Trimble & R. W. Stark, 1981. The limiting role of phosphorus in a woodland stream ecosystem: effects of P enrichment on leaf decomposition and primary producers. Ecology 62: 146–158.CrossRefGoogle Scholar
  15. Fernandes, I., S. Duarte, F. Cássio & C. Pascoal, 2009. Mixtures of zinc and phosphate affect leaf litter decomposition by aquatic fungi in streams. Science of the Total Environment 407: 4283–4288.PubMedCrossRefGoogle Scholar
  16. Ferreira, V., V. Gulis & A. S. Graça, 2006. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149: 718–729.PubMedCrossRefGoogle Scholar
  17. Greenwood, J. L., A. D. Rosemond & J. B. Wallace, 2007. Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways. Oecologia 151: 1088–1093.CrossRefGoogle Scholar
  18. Gulis, V. & K. Suberkropp, 2003a. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology 48: 123–134.CrossRefGoogle Scholar
  19. Gulis, V. & K. Suberkropp, 2003b. Effect of inorganic nutrients on relative contribution of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microbial Ecology 45: 11–19.PubMedCrossRefGoogle Scholar
  20. Gulis, V., A. D. Rosemond, K. Suberkropp, H. S. Weyers & J. P. Benstead, 2004. The effect of nutrient enrichment on the decomposition of wood and associated microbial activity in streams. Freshwater Biology 49: 1437–1447.CrossRefGoogle Scholar
  21. Gulis, V., V. Ferreira & A. S. Graça, 2006. Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshwater Biology 51: 1655–1669.CrossRefGoogle Scholar
  22. Hessen, D. O., G. I. Agren, T. R. Anderson, J. J. Elser & P. C. De Ruiter, 2004. Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85: 1179–1192.CrossRefGoogle Scholar
  23. Huryn, A. D., V. M. Butz Huryn, C. J. Arbuckle & L. Tsomides, 2002. Catchment land-use, macroinvertebrates and detritus processing in headwater streams: taxonomic richness versus function. Freshwater Biology 47: 401–415.CrossRefGoogle Scholar
  24. Kaushik, N. K. & H. B. N. Hynes, 1971. The fate of dead leaves that fall into streams. Archiv für Hydrobiology 68: 465–515.Google Scholar
  25. Krebs, C. J., 1985. Ecology: The Experimental Analysis of Distribution and Abundance, 3rd ed. Harper and Row Publishers, New York: 521–522.Google Scholar
  26. Kuehn, K. A., M. J. Lemke, R. G. Wetzel & K. Suberkropp, 2000. Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnology and Oceanography 45: 862–870.CrossRefGoogle Scholar
  27. Lecerf, A. & E. Chauvet, 2008a. Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic and Applied Ecology 9: 598–605.CrossRefGoogle Scholar
  28. Lecerf, A. & E. Chauvet, 2008b. Diversity and functions of leaf-associated fungi in human-dominated streams. Freshwater Biology 53: 1658–1672.CrossRefGoogle Scholar
  29. Lecerf, A., M. Dobson, Ch. Dang & E. Chauvet, 2005. Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Oecologia 146: 432–442.PubMedCrossRefGoogle Scholar
  30. Lecerf, A., P. Usseglio-Polaterra, J.-Y. Charcosset, D. Lambrigot, B. Bracht & E. Chauvet, 2006. Assessment of functional integrity of eutrophic streams using litter breakdown and benthic macroinvertebrates. Archiv für Hydrobiology 165: 105–126.CrossRefGoogle Scholar
  31. Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd ed. Elsevier, Amsterdam.Google Scholar
  32. Marvanová, L. & E. Descals, 1985. New and critical taxa of aquatic hyphomycetes. Botanical Journal of the Linnean Society 91: 1–23.Google Scholar
  33. Melillo, J. M. & J. D. Aber, 1984. Nutrient immobilization in decaying litter: an example of carbon nutrient interactions. In Golley, F. (ed.), Trends in Ecological Research for the 1980’s. Plenum Press, New York: 193–215.Google Scholar
  34. Menéndez, M., 2009. Response of early Ruppia cirrhosa litter breakdown to nutrient addition in a coastal lagoon affected by agricultural runoff. Estuarine Coastal and Shelf Science 82: 608–614.CrossRefGoogle Scholar
  35. Menéndez, M., M. Martínez, O. Hernández & F. A. Comín, 2001. Comparison of leaf decomposition in two Mediterranean rivers: a large eutrophic river and an oligotrophic stream (S Catalonia, NE Spain). International Review of Hydrobiology 86: 475–486.CrossRefGoogle Scholar
  36. Menéndez, M., O. Hernández & F. A. Comín, 2003. Seasonal comparisons of leaf processing rates in two Mediterranean rivers with different nutrient availability. Hydrobiologia 495: 159–169.CrossRefGoogle Scholar
  37. Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque.Google Scholar
  38. Mesquita, A., C. Pascoal & F. Cássio, 2007. Assessing effects of eutrophication in streams based on breakdown of eucalypt leaves. Fundamentals and Applied Limnology/Archiv für Hydrobiology 168: 221–230.CrossRefGoogle Scholar
  39. Nijboer, R. C. & P. F. M. Verdonschot, 2004. Variable selection for modelling effects of eutrophication on stream and river ecosystems. Ecological Modeling 177: 17–39.CrossRefGoogle Scholar
  40. Niyogi, D. K., K. S. Simon & C. R. Townsed, 2003. Breakdown of tussock grass in streams along a gradient of agricultural development in New Zealand. Freshwater Biology 48: 1708–1968.CrossRefGoogle Scholar
  41. Pascoal, C., M. Pinho & P. Gomes, 2003. Assessing structural and functional ecosystem condition using leaf breakdown: studies in a polluted river. Freshwater Biology 48: 2004–2033.CrossRefGoogle Scholar
  42. Pascoal, C., F. Cássio & L. Marvanová, 2005. Anthropogenic stress may affect aquatic hyphomecete diversity more than leaf decomposition in a low-order stream. Archiv für Hydrobiology 162: 481–496.CrossRefGoogle Scholar
  43. Peterson, B. J., L. Deegan, J. Heldrich, J. E. Hobbie, M. Hullar, B. Moller, T. E. Ford, A. Hershey, A. Hiltner, G. Kipphut, M. A. Lock, D. M. Feibig, V. McKinley, M. C. Miller, J. R. Vestal, R. Venutllo & G. Volk, 1993. Biological response of a tundra river to fertilization. Ecology 74: 653–672.CrossRefGoogle Scholar
  44. Pinna, M. & A. Basset, 2004. Summer drought disturbance on plant detritus decomposition processes in three River Tirso (Sardinia, Italy) sub-basins. Hydrobiologia 522: 311–319.CrossRefGoogle Scholar
  45. Pinna, M., A. Fonnesu, F. Sangiorgio & A. Basset, 2004. Influence of the summer drought disturbance on spatial patterns of resource availability and detritus processing in Mediterranean stream sub-basins (Sardinia, ITALY). International Review of Hydrobiology 89: 484–499.CrossRefGoogle Scholar
  46. Richardson, J. S., 1992. Food, microhabitat, or both? Macroinvertebrate use of leaf accumulations in a montane stream. Freshwater Biology 27: 169–176.CrossRefGoogle Scholar
  47. Robinson, C. T. & M. O. Gessner, 2000. Nutrient addition accelerates leaf breakdown in an alpine springbrook. Oecologia 122: 258–263.CrossRefGoogle Scholar
  48. Rosemond, A. D., C. M. Pringle, A. Ramírez, M. J. Paul & J. L. Meyer, 2002. Landscape variation in phosphorus concentration and effects on detritus-based tropical streams. Limnology and Oceanography 47: 278–289.CrossRefGoogle Scholar
  49. Rowe, J. M., S. K. Meegan, E. S. Engstrom, S. E. Perry & W. B. Perry, 1996. Comparison of leaf processing rates under different temperature regimes in three headwater streams. Freshwater Biology 36: 277–288.CrossRefGoogle Scholar
  50. Royer, T. V. & W. Misshall, 2001. Effects of nutrient enrichment and leaf quality on the breakdown of leaves in a hardwater stream. Freshwater Biology 46: 603–610.CrossRefGoogle Scholar
  51. Sabater, S., A. Elosegi, V. Acuna, A. Basaguren, I. Munoz & J. Pozo, 2008. Effect of climate on the trophic structure of temperate forested streams. A comparison of Mediterranean and Atlantic streams. Science of the Total Environment 390: 475–484.PubMedCrossRefGoogle Scholar
  52. Sampaio, A., R. Cortes & C. Leào, 2001. Invertebrate and microbial colonisation in native and exotic leaf litter species in a mountain stream. International Review of Hydrobiology 86: 527–540.CrossRefGoogle Scholar
  53. Sangiorgio, F., A. Fonnesu & G. Mancinelli, 2007. Effect of drought frequency and other reach characteristics on invertebrate communities and litter breakdown in the intermittent Mediterranean river Pula (Sardinia, Italy). International Review of Hydrobiology 92: 156–172.CrossRefGoogle Scholar
  54. Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, United Kingdom.Google Scholar
  55. Suberkropp, K., 1998. Effect of dissolved nutrients on two aquatic hyphomycetes growing on leaf litter. Mycological Research 102: 998–1002.CrossRefGoogle Scholar
  56. Suberkropp, K. & E. Chauvet, 1995. Regulation of leaf breakdown by fungi in streams: influences of water chemistry. Ecology 76: 1433–1445.CrossRefGoogle Scholar
  57. Suberkropp, K., V. Gulis, A. D. Rosemond & J. P. Benstead, 2010. Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: results of a 5-year continuous enrichment. Limnology and Oceanography 55: 149–160.CrossRefGoogle Scholar
  58. Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polaterra, 2002. Invertébrés d’eau douce. Systématique, biologie, écologie. CNRS Editions, Paris.Google Scholar
  59. Triska, F. J. & J. R. Sedell, 1976. Decomposition of four species of leaf litter in response to nitrate manipulation. Ecology 57: 783–792.CrossRefGoogle Scholar
  60. Valiela, I., J. M. Teal, S. D. Allen, R. Van Etten, D. Goehringer & S. Volkmann, 1985. Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology 89: 29–54.CrossRefGoogle Scholar
  61. Van Ryckegem, G., M. O. Gessner & A. Verbeken, 2007. Fungi on leaf blades of Phragmites australis in a brackish tidal marsh: diversity, succession, and leaf decomposition. Microbial Ecology 53: 600–611.PubMedCrossRefGoogle Scholar
  62. Zar, J. H., 1999. Biostatistical Analysis, 4th ed. Prentice-Hall, Englewood Cliffs.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Margarita Menéndez
    • 1
  • Enrique Descals
    • 2
  • Tecla Riera
    • 1
  • Oscar Moya
    • 2
  1. 1.Departmento de EcologíaUniversidad de BarcelonaBarcelonaSpain
  2. 2.Instituto Mediterráneo de Estudios Avanzados, IMEDEACSIC-Univ. Illes BalearsMajorcaSpain

Personalised recommendations