, Volume 667, Issue 1, pp 119–132 | Cite as

Feeding habits of four sympatric fish species in the Iberian Peninsula: keys to understanding coexistence using prey traits

  • Javier Sánchez-Hernández
  • Rufino Vieira-Lanero
  • María J. Servia
  • Fernando Cobo
Primary research paper


Trophic interactions are important factors structuring animal communities. We assessed the trophic relations of four fish species that live in sympatry in the River Ladra (NW Spain), and cluster analysis differentiated two feeding strategies: (1) species with omnivorous feeding habits, feeding mainly on detritus and plant material but with aquatic macroinvertebrates as an important complement (Achondrostoma arcasii and Pseudochondrostoma duriense) and (2) species feeding mainly (Salmo trutta) or exclusively (Gasterosteus gymnurus) on aquatic macroinvertebrates. Concerning ingested macroinvertebrates, the trophic overlap was quantified using Schoener’s index and the results obtained revealed a high diet overlap among the species (from 81.3 up to 99.2%). In order to get a deeper insight into mechanisms of fish species coexistence, we used ten biological and ecological traits of macroinvertebrate prey to discriminate feeding preferences. As a result, despite the high similarity among the diets, our analyses suggest that differences in diel activity patterns and drift behaviour of preys, as well as differences in the prey size, are important adaptive features that may reduce the inter-specific competition in the fish community and permit the partitioning of food that allows coexistence.


Diet Macroinvertebrate traits Coexistence Iberian Peninsula 



María Teresa Couto (University of Santiago of Compostela) gave advice for trait analysis. Part of this work has been carried out in the laboratories of the Station of Hydrobiology of the USC “Encoro do Con” at Vilagarcía de Arousa. This work has been partially supported by the project INCITE09203072PR of the Xunta de Galicia. The authors are also grateful to two anonymous referees for their helpful comments.


  1. Ågren, G. I. & T. Fagerstrøm, 1984. Limiting similarity in plants: randomness prevents exclusion of species with similar competitive abilities. Oikos 43: 369–375.CrossRefGoogle Scholar
  2. Alanärä, A., M. D. Burns & N. B. Metcalfe, 2001. Intraspecific resource partitioning in brown trout: the temporal distribution of foraging is determined by social rank. Journal of Animal Ecology 70: 980–986.CrossRefGoogle Scholar
  3. Amarasekare, P., 2003. Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters 6: 1109–1122.CrossRefGoogle Scholar
  4. Amundsen, P.-A. & H.-M. Gabler, 2008. Food consumption and growth of Atlantic salmon parr in subarctic rivers: empirical support for food limitation and competition. Journal of Fish Biology 73: 250–261.CrossRefGoogle Scholar
  5. Baker, J. A. & S. T. Ross, 1981. Spatial and temporal resource utilization by southeastern cyprinids. Copeia 1981: 178–189.CrossRefGoogle Scholar
  6. Björnsson, B., 2001. Diel changes in the feeding behaviour of Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) in Ellidavatn, a small lake in southwest Iceland. Limnologica-Ecology and Management of Inland Waters 31: 281–288.CrossRefGoogle Scholar
  7. Bowen, S. H., 1979. A nutritional constraint in detritivory by fishes: the stunted population of Sarotherodon mossambicus in Lake Sibaya, South Africa. Ecological Monographs 49: 17–31.CrossRefGoogle Scholar
  8. Bowen, S. H., 1987. Composition and nutritional value of detritus. In Moriarty, D. J. W. & R. S. V. Pullin (eds), Detritus and Microbial Ecology in Aquaculture. ICLARM, Manila: 192–216.Google Scholar
  9. Chevenet, F., S. Dolédec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.CrossRefGoogle Scholar
  10. Clarke, K. R. & R. N. Gorley, 2001. PRIMER v5: User Manual/Tutorial. PRIMER-E, Plymouth.Google Scholar
  11. Clavero, M., Q. Pou-Rovira & L. Zamora, 2009. Biology and habitat use of three-spined stickleback (Gasterosteus aculeatus) in intermittent Mediterranean streams. Ecology of Freshwater Fish 18: 550–559.CrossRefGoogle Scholar
  12. Coelho, M. M., M. J. Martins, M. J. Collares-Pereira, A. M. Pires & I. G. Cowx, 1997. Diet and feeding relationships of two Iberian cyprinids. Fisheries Management and Ecology 4: 83–92.CrossRefGoogle Scholar
  13. Copp, G. H. & V. Kovác, 2003. Sympatry between threespined Gasterosteus aculeatus and nine-spined Pungitius pungitius sticklebacks in English lowland streams. Annales Zoologici Fennici 40: 341–355.Google Scholar
  14. Cundari, T. R., C. Sârbu & H. F. Pop, 2002. Robust fuzzy principal component analysis (FPCA). A comparative study concerning interaction of carbon-hydrogen bonds with molybdenum-oxo bonds. Journal of Chemical Information and Computer Sciences 42: 1363–1369.PubMedGoogle Scholar
  15. David, B. O., G. P. Closs, S. K. Crow & E. A. Hansen, 2007. Is diel activity determined by social rank in a drift-feeding stream fish dominance hierarchy? Animal Behaviour 74: 259–263.CrossRefGoogle Scholar
  16. de Crespin de Billy, V., 2001. Régime alimentaire de la truite (Salmo trutta L.) en eaux courantes: rôles de l′habitat physique des traits des macroinvertébrés. Thesis. L′université Claude Bernard, Lyon: 84 pp.Google Scholar
  17. de Crespin de Billy, V. & P. Usseglio-Polatera, 2002. Traits of brown trout prey in relation to habitat characteristics and benthic invertebrate communities. Journal of Fish Biology 60: 687–714.CrossRefGoogle Scholar
  18. de Crespin de Billy, V., B. Dumont, T. Lagarrigue, P. Baran & B. Statzner, 2002. Invertebrate accessibility and vulnerability in the analysis of brown trout (Salmo trutta L.) summer habitat suitability. River Research and Applications 18: 533–553.CrossRefGoogle Scholar
  19. de Mérona, B. & J. Rankin-De-Mérona, 2004. Food resource partitioning in a fish community of the central Amazon floodplain. Neotropical Ichthyology 2: 75–84.CrossRefGoogle Scholar
  20. Degerman, E., I. Näslund & B. Sers, 2000. Stream habitat use and diet of juvenile (0+) brown trout and grayling in sympatry. Ecology of Freshwater Fish 9: 191–201.CrossRefGoogle Scholar
  21. Doadrio, I., 2001. Atlas y libro rojo de los peces continentales de España. Ministerio de Medio Ambiente y Consejo Superior de Investigaciones Científicas, Madrid.Google Scholar
  22. Dolédec, S., J. M. Olivier & B. Statzner, 2000. Accurate description of the abundance of taxa and their biological traits in stream invertebrate communities: effects of taxonomic and spatial resolution. Archiv für Hydrobiologie 148: 25–43.Google Scholar
  23. Elliott, J. M., 1967. The food of trout (Salmo trutta) in a Dartmoor stream. Journal of Applied Ecology 4: 60–71.Google Scholar
  24. Elliott, J. M., 1994. Quantitative Ecology and the Brown Trout. Oxford University Press, Oxford.Google Scholar
  25. Encina, L. & C. Granado-Lorencio, 1994. Gut evacuation in barbel (Barbus sclateri G. 1868), nase (Chondrostoma willkommi S., 1866). Ecology of Freshwater Fish 23: 1–8.Google Scholar
  26. Encina, L., A. Rodriguez-Ruiz & C. Granado-Lorencio, 2004. Trophic habits of the fish assemblage in an artificial freshwater ecosystem: the Joaquin Costa reservoir, Spain. Folia Zoologica 53: 437–449.Google Scholar
  27. Facey, D. E. & G. D. Grossman, 1992. The relationship between water velocity, energetic costs and microhabitat use in four North American stream fishes. Hydrobiologia 239: 1–6.CrossRefGoogle Scholar
  28. Friberg, N., T. H. Andersen, H. O. Hansen, T. M. Iversen, D. Jacobsen, L. Krojgaard & S. E. Larsen, 1994. The effect of brown trout (Salmo trutta L.) on stream invertebrate drift, with special reference to Gammarus pulex L. Hydrobiologia 294: 105–110.CrossRefGoogle Scholar
  29. Gabler, H.-M. & P.-A. Amundsen, 1999. Resource partitioning between Siberian bullhead (Cottus poecilopus Heckel) and Atlantic salmon parr (Salmo salar L.) in a sub-Arctic river, northern Norway. Ecology of Freshwater Fish 8: 201–208.CrossRefGoogle Scholar
  30. Gabler, H.-M. & P.-A. Amundsen, 2010. Feeding strategies, resource utilisation and potential mechanisms for competitive coexistence of Atlantic salmon and alpine bullhead in a sub-Arctic river. Aquatic Ecology 44: 325–336.CrossRefGoogle Scholar
  31. Garman, G. C., 1991. Use of terrestrial arthropod prey by a stream-dwelling cyprinid fish. Environmental Biology of Fishes 30: 325–331.CrossRefGoogle Scholar
  32. Gerking, S. D., 1994. Feeding Ecology of Fish. Academic Press, San Diego.Google Scholar
  33. Gill, A. B., 2004. The dynamics of prey choice in fish: the importance of prey size and satiation. Journal of Fish Biology 63: 105–116.CrossRefGoogle Scholar
  34. Grossman, G. D. & V. Boulé, 1991. An experimental study of competition for space between rainbow trout (Oncorhynchus mykiss) and rosyside dace (Clinostomus funduloides). Canadian Journal of Fisheries and Aquatic Sciences 48: 1235–1243.Google Scholar
  35. Grossman, G. D., A. de Sostoa, M. C. Freeman & J. Lobón-Cerviá, 1987a. Microhabitat use in a Mediterranean riverine fish assemblage. Fishes of the upper Matarraña. Oecologia (Berlin) 73: 490–500.CrossRefGoogle Scholar
  36. Grossman, G. D., A. de Sostoa, M. C. Freeman & J. Lobón-Cerviá, 1987b. Microhabitat use in a Mediterranean riverine fish assemblage. Fishes of the upper Matarraña. Oecologia (Berlin) 73: 501–512.CrossRefGoogle Scholar
  37. Hart, P. J. B., 2003. Habitat use and feeding behaviour in two closely related fish species, the three-spined and nine-spined stickleback: an experimental analysis. Journal of Animal Ecology 72: 777–783.CrossRefGoogle Scholar
  38. Haury, J., D. Ombredane & J. L. Bangliniére, 1991. L′habitat de la truite commune (Salmo trutta L.) en cours d′eau. In Baglinière, J. L. & G. Maisse (eds), La Truite: Biologie et Écologie. INRA Editions, Paris: 121–149.Google Scholar
  39. Heino, J., 2005. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biology 50: 1578–1587.CrossRefGoogle Scholar
  40. Hernando, J. A. & M. C. Soriguer, 1992. Biogeography of freshwater fish of the Iberian Peninsula. Limnetica 8: 243–253.Google Scholar
  41. Hesthagen, T., R. Saksgård, O. Hegge, B. K. Dervo & J. Skurdal, 2004. Niche overlap between young brown trout (Salmo trutta) and Siberian sculpin (Cottus poecilopus) in a subalpine Norwegian river. Hydrobiologia 521: 117–125.CrossRefGoogle Scholar
  42. Hilderbrand, R. H. & J. L. Kershner, 2004. Influence of habitat type on food supply, selectivity, and diet overlap of Bonneville Cutthroat Trout and Nonnative Brook Trout in Beaver Creek, Idaho. North American Journal of Fisheries Management 24: 33–40.CrossRefGoogle Scholar
  43. Hill, J. & G. D. Grossman, 1993. An energetic model of microhabitat use for rainbow trout and rosyside dace. Ecology 74: 685–698.CrossRefGoogle Scholar
  44. Ivlev, V. S., 1961. Experimental ecology of the feeding of fishes. Translated from the Russian by Douglas Scott. Yale University Press, New Haven.Google Scholar
  45. Jensen, H., T. Bøhn, P.-A. Amundsen & P. E. Aspholm, 2004. Feeding ecology of piscivorous brown trout (Salmo trutta L.) in a subarctic watercourse. Annales Zoologici Fennici 41: 319–328.Google Scholar
  46. Johnson, R. L., S. M. Coghlan & T. Harmon, 2007. Spatial and temporal variation in prey selection of brown trout in a cold Arkansas tailwater. Ecology of Freshwater Fish 16: 373–384.CrossRefGoogle Scholar
  47. Kahilainen, K. & H. Lehtonen, 2002. Brown trout (Salmo trutta L.) and Arctic charr (Salvelinus alpinus (L.)) as predators on three sympatric whitefish (Coregonus lavaretus (L.)) forms in the subarctic Lake Muddusjärvi. Ecology of Freshwater Fish 11: 158–167.CrossRefGoogle Scholar
  48. L’Abée-Lund, J. H., A. Langeland & H. Sægrov, 1992. Piscivory by brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.) in Norwegian lakes. Journal of Fish Biology 41: 91–101.CrossRefGoogle Scholar
  49. Lobón-Cervia, J. & P. A. Rincón, 1994. Trophic ecology of red roach (Rutilus arcasii) in a seasonal stream; an example of detritivory as a feeding tactic. Freshwater Biology 32: 123–132.CrossRefGoogle Scholar
  50. MacNeil, C., R. W. Elwood & J. T. A. Dick, 2000. Factors influencing the importance of Gammarus spp. (Crustacea: Amphipoda) in riverine salmonid diets. Archivfür Hydrobiologie 149: 87–107.Google Scholar
  51. Magalhaes, M. F., 1992. Feeding ecology of the Iberian Cyprinid Barbus bocagei Steindachner, 1865 in a lowland river. Journal of Fish Biology 40: 123–133.CrossRefGoogle Scholar
  52. Magalhães, M. F., 1993a. Feeding of an Iberian stream cyprinid assemblage: seasonality of resource use in a highly variable environment. Oecologia 96: 253–260.CrossRefGoogle Scholar
  53. Magalhães, M. F., 1993b. Effects of season and body size on the distribution and diet of the Iberian chub Leuciscus pyrenaicus in a lowland catchment. Journal of Fish Biology 42: 875–888.CrossRefGoogle Scholar
  54. Museth, J., R. Borgstrøm & J. E. Brittain, 2010. Diet overlap between introduced European minnow (Phoxinus phoxinus) and young brown trout (Salmo trutta) in the lake, Øvre Heimdalsvatn: a result of abundant resources or forced niche overlap? Hydrobiologia 642: 93–100.CrossRefGoogle Scholar
  55. Neveu, A., 1980. Relations entre le benthos, la dérive, le rythme alimentaire et le taux de consommation des truites communes (Salmo trutta L.) en canal expérimental. Hydrobiologia 76: 217–228.CrossRefGoogle Scholar
  56. Newson, M. D. & C. L. Newson, 2000. Geomorphology, ecology and river channel habitat: mesoscale approaches to basin-scale challenges. Progress in Physical Geography 24: 195–217.CrossRefGoogle Scholar
  57. Novakowski, G. C., N. S. Hahn & R. Fugi, 2008. Diet seasonality and food overlap of the fish assemblage in a pantanal pond. Neotropical Ichthyology 6: 567–576.CrossRefGoogle Scholar
  58. Ochs, G., 1969. The ecology and ethology of whirligig beetles. Archiv für Hydrobiologie 37: 375–404.Google Scholar
  59. Oscoz, J., M. C. Escala & F. Campos, 2000. La alimentación de la trucha común (Salmo trutta L., 1758) en un río de Navarra (N. España). Limnetica 18: 29–35.Google Scholar
  60. Oscoz, J., P. M. Leunda, F. Campos, M. C. Escala & R. Miranda, 2005. Diet of 0+ brown trout (Salmo trutta L., 1758) from the river Erro (Navarra, North of Spain). Limnetica 24: 319–326.Google Scholar
  61. Power, G., 1992. Seasonal growth and diet of juvenile Chinook salmon (Oncorhynchus tshawytscha) in demonstration channels and the main channel of the Waitaki river, New Zealand, 1982–1983. Ecology of Freshwater Fish 1: 12–25.CrossRefGoogle Scholar
  62. Rader, R. B., 1997. A functional classification of the drift: traits that influence invertebrate availability to salmonids. Canadian Journal of Fisheries and Aquatic Sciences 54: 1211–1234.CrossRefGoogle Scholar
  63. Ranta, E. & V. Kaitala, 1991. School size affects individual feeding success in three-spined sticklebacks (Gasterosteus aculeatus L.). Journal of Fish Biology 5: 733–737.CrossRefGoogle Scholar
  64. Rincón, P. A. & J. Lobón-Cerviá, 1993. Microhabitat use by stream-resident brown trout: bioenergetic consequences. Transactions of the American Fisheries Society 122: 575–587.CrossRefGoogle Scholar
  65. Rincón, P. A. & J. Lobón-Cerviá, 1995. Use o fan encounter model to predict size-selective predation by a stream-dwelling cyprinid. Freshwater Biology 33: 181–191.CrossRefGoogle Scholar
  66. Rincón, P. A. & J. Lobón-Cerviá, 1999. Prey size selection by brown trout (Salmo trutta L.) in a stream in northern Spain. Canadian Journal of Zoology 77: 755–765.CrossRefGoogle Scholar
  67. Río-Barja, F. J. & F. Rodríguez-Lestegás, 1992. Os Ríos Galegos. Morfoloxía e Réxime. Concello da Cultura Galega, Santiago de Compostela.Google Scholar
  68. Rodríguez-Capítulo, A., I. Muñoz, N. Bonada, A. Gaudés & S. Tomanova, 2009. La biota de los ríos: los invertebrados. In Elosegi, A. & S. Sabater (eds), Conceptos y técnicas en ecología fluvial. Fundación BBVA, Bilbao: 253–270.Google Scholar
  69. Rodríguez-Jiménez, A. J., 1987. Relaciones tróficas de una comunidad íctica, durante el estío en el río Aljucén (Extremadura, España). Miscel lània Zoològica 11: 249–256.Google Scholar
  70. Sagar, P. M. & G. J. Glova, 1995. Prey availability and diet of juvenile brown trout (Salmo trutta) in relation to riparian willows (Salix spp.) in three New Zealand streams. New Zealand Journal of Marine & Freshwater Research 29: 527–537.CrossRefGoogle Scholar
  71. Sánchez, J., 2009. Biología de la alimentación de la trucha común (Salmo trutta Linné, 1758) en los ríos de Galicia. Thesis. Universidad de Santiago de Compostela.Google Scholar
  72. Sánchez-Gonzáles, S., G. Ruiz-Campos & S. Contreras-Balderas, 2001. Feeding ecology and habitat of the threespine stickleback, Gasterosteus aculeatus microcephalus, in a remnant population of northwestern Baja California, México. Ecology of Freshwater Fish 10: 191–197.CrossRefGoogle Scholar
  73. Sandlund, O. T., J. Museth, T. F. Næsje, S. Rognerud, R. Saksgård, T. Hesthagen & R. Borgstrøm, 2010. Habitat use and diet of sympatric Arctic charr (Salvelinus alpinus) and whitefish (Coregonus lavaretus) in five lakes in southern Norway: not only interspecific population dominance? Hydrobiologia 650: 27–41.CrossRefGoogle Scholar
  74. Schoener, T. W., 1970. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51: 408–418.CrossRefGoogle Scholar
  75. Schoener, T. W., 1989. The ecological niche. In Cherrett, J. M. (ed), Ecological Concepts. Blackwell, Oxford: 79–107.Google Scholar
  76. Statzner, B. & L. A. Bêche, 2010. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology 55: 80–119.CrossRefGoogle Scholar
  77. Stevens, M., J. Maes & F. Ollevier, 2006. Taking potluck: trophic guild structure and feeding strategy of an intertidal fish assemblage. In Stevens, M. (ed), Intertidal and Basin-Wide Habitat Use of Fishes in the Scheldt Estuary: 37–59.Google Scholar
  78. Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2002. Invertébrés d’eau douce (2nd Corrected Impression). CNRS editions, París.Google Scholar
  79. Teixeira, A. & R. M. V. Cortes, 2006. Diet of stocked and wild trout, Salmo trutta: is there competition for resources? Folia Zoologica 55: 61–73.Google Scholar
  80. Valladolid, M. & M. Przybylski, 1996. Feeding relations among cyprinids in the Lozoya River (Madrid, central Spain). Polskie Archiwum Hydrobiologii 43: 213–223.Google Scholar
  81. Vidal Romani, J. R., 1989. Granite geomorphology in Galicia (NW España). Cuadernos Laboratorio Xeolóxico de Laxe 13: 89–163.Google Scholar
  82. Vieira, N. K. M., N. L. Poff, D. M. Carlisle, S. R. Moulton, M. L. Koski & B. C. Kondratieff, 2006. A database of lotic invertebrate traits for North America. U.S. Geological Survey Data Series 187 [available on internet at].
  83. Wallace Jr., R. K., 1981. An assessment of diet overlap indexes. Transactions of the American Fisheries Society 110: 72–76.CrossRefGoogle Scholar
  84. Wiens, J. A., 1993. Fat times, lean times and competition among predators. Trends in Ecology & Evolution 8: 348–349.CrossRefGoogle Scholar
  85. Yant, P. R., J. R. Karr & P. Angermeier, 1984. Stochasticity in stream fish communities: an alternative interpretation. American Naturalist 124: 573–582.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Javier Sánchez-Hernández
    • 1
    • 2
  • Rufino Vieira-Lanero
    • 2
  • María J. Servia
    • 3
  • Fernando Cobo
    • 1
    • 2
  1. 1.Departamento de Zoología y Antropología FísicaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Estación de Hidrobiología “Encoro do Con”Vilagarcía de Arousa, PontevedraSpain
  3. 3.Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de CienciasUniversidad de A CoruñaCoruñaSpain

Personalised recommendations