Hydrobiologia

, 667:89 | Cite as

Pattern of nutrient availability and plant community assemblage in Everglades Tree Islands, Florida, USA

Primary research paper

Abstract

We address the relative importance of nutrient availability in relation to other physical and biological factors in determining plant community assemblages around Everglades Tree Islands (Everglades National Park, Florida, USA). We carried out a one-time survey of elevation, soil, water level and vegetation structure and composition at 138 plots located along transects in three tree islands in the Park’s major drainage basin. We used an RDA variance partitioning technique to assess the relative importance of nutrient availability (soil N and P) and other factors in explaining herb and tree assemblages of tree island tail and surrounded marshes. The upland areas of the tree islands accumulate P and show low N concentration, producing a strong island-wide gradient in soil N:P ratio. While soil N:P ratio plays a significant role in determining herb layer and tree layer community assemblage in tree island tails, nevertheless part of its variance is shared with hydrology. The total species variance explained by the predictors is very low. We define a strong gradient in nutrient availability (soil N:P ratio) closely related to hydrology. Hydrology and nutrient availability are both factors influencing community assemblages around tree islands, nevertheless both seem to be acting together and in a complex mechanism. Future research should be focused on segregating these two factors in order to determine whether nutrient leaching from tree islands is a factor determining community assemblages and local landscape pattern in the Everglades, and how this process might be affected by water management.

Keywords

Biogeochemical hot-spot N:P ratio Phosphorus Self-assembly Spatial patterns Landscape ecology Wetlands 

References

  1. Bedford, B. L., M. R. Walbridge & A. Aldous, 1999. Patterns in nutrient limitation availability and plant diversity of temperate North American wetlands. Ecology 80: 2151–2169.CrossRefGoogle Scholar
  2. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  3. Bostic, E. M. & J. R. White, 2007. Soil phosphorus and vegetation influence on wetland phosphorus release after simulated drought. Soil Science Society of America Journal 71: 238–244.CrossRefGoogle Scholar
  4. Bostic, E. M., J. R. White, R. Corstanje & K. R. Reddy, 2010. Redistribution of wetland soil phosphorus ten years after the conclusion of nutrient loading. Soil Science Society of America Journal 74: 1808–1815.CrossRefGoogle Scholar
  5. Busch, J., I. A. Mendelssohn, B. Lorenzen, H. Brix & S. Miao, 2004. Growth responses of the Everglades wet prairie species Eleocharis cellulosa and Rhynchospora tracyi to water level and phosphate availability. Aquatic Botany 78: 37–54.CrossRefGoogle Scholar
  6. Daoust, R. J. & D. L. Childers, 1999. Control of emergent macrophyte composition, abundance, and productivity in freshwater Everglades wetland communities. Wetlands 19: 262–275.CrossRefGoogle Scholar
  7. Dean, W. E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentology Petrology 44: 242–248.Google Scholar
  8. Delaune, R. D., C. J. Smith & M. N. Sarafyan, 1986. Nitrogen cycling in a freshwater marsh of Panicum hemitomon of the deltaic plain of the Mississippi River. Journal of Ecology 74: 249–256.CrossRefGoogle Scholar
  9. DiTomaso, A. & L. W. Aarsen, 1989. Resource manipulation in natural vegetation: a review. Vegetatio 84: 9–29.CrossRefGoogle Scholar
  10. Edwards, A. L., J. H. Richards & D. W. Lee, 2003. Responses to a fluctuating environment: effects of water depth on growth and biomass allocation in Eleocharis cellulosa Torr. (Cyperaceae). Canadian Journal of Botany 81: 964–975.CrossRefGoogle Scholar
  11. Gerritsen, J. & H. S. Greening, 1989. Marsh seed banks of the Okefenokee Swamp: effects of hydrologic regime and nutrient. Ecology 70: 750–763.CrossRefGoogle Scholar
  12. German, E. R., 2000. Regional evaluation of evapotranspiration in the Everglades. USGS Water-Resources Investigation Report 00-4217. US Geological Survey, Washington.Google Scholar
  13. Givnish, T. J., J. C. Volin, V. D. Owen, V. C. Volin, J. D. Muss & P. H. Glaser, 2008. Vegetation differentiation in the patterned landscape of the central Everglades: importance of local and landscape drivers. Global Ecology and Biogeography 17: 384–402.CrossRefGoogle Scholar
  14. Golterman, H. L., 1995a. The role of the iron hydroxide-phosphate-sulphide system in the phosphate exchange between sediments and overlying water. Hidrobiologia 297: 43–54.CrossRefGoogle Scholar
  15. Golterman, H. L., 1995b. The labyrinth of nutrient cycles and buffers in wetlands: results based on research in the Camarge (south France). Hydrobiologia 315: 39–58.CrossRefGoogle Scholar
  16. Golterman, H. L., 2004. The Chemistry of Phosphates and Nitrogen Compounds in Sediment. Kluwer Academic Publisher, Dordrecht.Google Scholar
  17. Grace, J. B. & D. Tilman, 1990. Perspective on Plant Competition. Academic Press, San Diego.Google Scholar
  18. Güsewell, S., 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytologist 164: 243–266.CrossRefGoogle Scholar
  19. Hanan, E. J. & M. S. Ross, 2010. Across-scale patterning of plant-soil-water interactions surrounding tree islands in Southern Everglades landscapes. Landscape Ecology 25: 463–476.CrossRefGoogle Scholar
  20. Jayachandran, J., S. Sah, J. P. Sah & M. S. Ross, 2004. Characterization, biogeochemistry, pore water chemistry and other aspects of soils in tree islands of Shark slough. In Ross, M. S. & D. T. Jones (eds), Tree Islands in the Shark Slough Landscape: Interactions of Vegetation, Hydrology and Soils. Final Report. Everglades National Park, Homestead: 17–29.Google Scholar
  21. Koerselman, W. & A. F. M. Meuleman, 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33: 1441–1450.CrossRefGoogle Scholar
  22. Larsen, L. G., W. H. Judson & J. P. Crimaldi, 2007. A delicate balance: ecohydrological feedbacks governing landscape morphology in a lotic peatland. Ecological monographs 77: 591–614.CrossRefGoogle Scholar
  23. McLean, E. O., 1982. Soil pH and lime requirement. In Page, A. L., R. H. Miller & R. D. Keeney (eds), Methods of Soil Analysis. 2. Chemical and Microbiological Properties. Agronomy Monograph 9, 2nd ed. Soil Science Society of America, Madison, Wisconsin: 199–209.Google Scholar
  24. Miller, S. P. & R. R. Sharitz, 2000. Manipulation of flooding and Arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species. Functional Ecology 14: 738–748.CrossRefGoogle Scholar
  25. National Research Council (NRC), 2003. Does Water Flow Influence Everglades Landscape Patterns?. The National Academies Press, Washington.Google Scholar
  26. Noe, G. B., D. L. Childers & R. D. Jones, 2001. Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique? Ecosystems 4: 603–624.CrossRefGoogle Scholar
  27. Olila, O. G. & K. R. Reddy, 1997. Influence of redox potential on phosphate by sediments in tow sub-tropical eutrophic lakes. Hydrobiologia 345: 45–57.CrossRefGoogle Scholar
  28. Orem, W. H., D. A. Willard, H. E. Lerch, A. L. Bates, A. Boyland & M. Comm, 2002. Nutrient geochemistry of sediments from two tree islands in water conservation area 3B, the Everglades, Florida. In Sklar, F. H. & A. G. van der Valk (eds), Tree Islands of the Everglades. Kluwer Academic Publishers, Netherlands.Google Scholar
  29. Richards, J. H. & C. T. Ivey, 2004. Morphological plasticity of Sagittaria lancifolia in response to phosphorus. Aquatic Botany 80: 53–67.CrossRefGoogle Scholar
  30. Ross, M.S. & J. P. Sah, (2011). Forest resource islands in a sub-tropical marsh: soil-site relationships in Everglades hardwood hammocks. Ecosystesms. doi:10.1007/s10021-011-9433-y.
  31. Ross, M. S., D. L. Reed, J. P. Sah, P. L. Ruiz & M. T. Lewin, 2003. Vegetation:environment relationships and water management in Shark Slough, Everglades National Park. Wetlands Ecology and Management 11: 291–303.CrossRefGoogle Scholar
  32. Ross, M. S., S. Mitchell-Brucker, J. P. Sah, S. Stothoff, P. L. Ruiz, D. L. Reed, K. Jayachandran & C. L. Coultas, 2006. Interaction of hydrology and nutrient limitation in the Ridge and Slough landscape of the southern Everglades. Hydrobiologia 569: 37–59.CrossRefGoogle Scholar
  33. Roem, W. J. & F. Berendse, 2000. Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grasslands and heathland communities. Biological Conservation 92: 151–161.CrossRefGoogle Scholar
  34. Sklar, F. H. & A. G. van der Valk, 2002. Tree islands of the Everglades: an overview. In Sklar, F. H. & A. G. van der Valk (eds), Tree Islands of the Everglades. Kluwer Academic Publishers, Netherlands.Google Scholar
  35. Solorzano, L. & J. H. Sharp, 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography 25: 754–758.CrossRefGoogle Scholar
  36. ter Braak, C. J. F., 1991. CANOCO—a FORTRAN Program for Canonical Community Ordination, Correspondence Analysis, Principal Component Analysis, and Redundancy Analysis. Microcomputer Power, Ithaca.Google Scholar
  37. ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanocoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca.Google Scholar
  38. Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton.Google Scholar
  39. Tilman, D., 1985. The resource ratio hypothesis of succession. American Naturalist 125: 827–852.CrossRefGoogle Scholar
  40. Tilman, D., 1997. Mechanism of plant competition. In Crawley, M. J. (ed.), Plant Ecology, 2nd ed. Blackwell Science, Oxford: 239–261.Google Scholar
  41. Totland, O. & J. Nylehn, 1998. Assessment of the effects of environmental change on the performance and density of Bistorta vivipara: the use of multivariate analysis and experimental manipulation. Journal of Ecology 86: 989–998.CrossRefGoogle Scholar
  42. Verhoeven, J. T. A., W. Koerselman & A. F. M. Meuleman, 1996. Nitrogen-or phosphorus-limited growth in herbaceous, wet vegetation: relation with atmospheric inputs and management. Trends in Ecology and Evolution 11: 494–497.PubMedCrossRefGoogle Scholar
  43. Vitousek, P. M. & L. R. Walker, 1987. Colonization, succession and resource availability: ecosystem-level interactions. In Gray, A. J., M. J. Crawley & J. P. Edwards (eds), Colonization, Succession and Stability. Blackwell Scientific Publications, Oxford: 201–224.Google Scholar
  44. Vitousek, P. M. & R. W. Howarth, 1991. Nitrogen limitation on land and in the sea: how it can occur? Biogeochemistry 13: 87–115.CrossRefGoogle Scholar
  45. Watts, D. L., M. J. Cohen, J. B. Heffernan, & T. Z. Osborne, 2010. Hydrologic modification and the loss of self-organized patterning in the ridge-slough mosaic of the Everglades. Ecosystems 13: 813–827.Google Scholar
  46. Wetzel, P. R., A. G. van der Valk, S. Newman, D. E. Gawlik, T. Troxler Gann, C. A. Coronado-Molina, D. L. Childers & F. H. Sklar, 2005. Maintaining tree islands in the Florida Everglades: nutrient redistribution is the key. Frontiers in Ecology and the Environment 3: 370–376.CrossRefGoogle Scholar
  47. Wetzel, P. R., A. G. van der Valk, S. Newman, C. A. Coronado-Molina, T. A. Troxler-Gann, D. L. Childers, W. H. Orem & F. H. Sklar, 2009. Heterogeneity of phosphorus distribution in a patterned landscape, the Florida Everglades. Plant Ecology 200: 83–90.CrossRefGoogle Scholar
  48. Yanbuaban, M., M. Osaki, T. Nuyim, J. Onthong & T. Watanabe, 2007. Sogo (Metroxylon sagu Rottb.) growth is affected by weeds in a tropical peat swamp in Thailand. Soil Science and Plant Nutrition 53: 267–277.CrossRefGoogle Scholar
  49. Zhou, M. & Y. Li, 2001. Phosphorus-sorption characteristic of calcareous soils and limestone from the southern Everglades and adjacent farmlands. Soil Science Society of America Journal 65: 1404–1412.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Estación Biológica de Doñana (EBD-CSIC)SevillaSpain
  2. 2.Southeast Environmental Research Center Florida International UniversityMiamiUSA

Personalised recommendations