, Volume 666, Issue 1, pp 167–178 | Cite as

Effects of food and light on naupliar swimming behavior of Apocyclops royi and Pseudodiaptomus annandalei (Crustacea, Copepoda)

  • C.-H. Wu
  • H.-U. Dahms
  • S.-H. Cheng
  • J.-S. HwangEmail author


We examined the effects of food and light on the swimming behavior of nauplii of the cyclopoid Apocyclops royi (Lindberg, 1940) (Copepoda: Cyclopoida) and the calanoid Pseudodiaptomus annandalei Sewell, 1919 (Copepoda: Calanoida). Several behavioral parameters such as swimming patterns, speed, and trajectories exhibited distinct ontogenetic differences between the two species. When algae Isochrysis galbana (Haptophyta: Isochrysidales) were offered as food to the nauplii of A. royi, they showed fast circle swimming behavior, while nauplii of P. annandalei never exhibited such behavior, neither with, nor without algae. The different behavioral patterns between the nauplii of both species suggest they both have different foraging strategies in detecting and capturing food.


Copepod nauplii Ontogenetic adaptations Swimming behavior Trajectories 



We acknowledge the financial support from the National Science Council, Taiwan, NSC (Grant NSC 97-2621-B-019-004), (Grant NSC 98-2311-B-019-002-MY3), (Grant NSC 98-2621-B-019-001-MY3), and the Center of Excellence for Marine Bioenvironment and Biotechnology of the National Taiwan Ocean University. This research was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-A001-0057).


  1. Anderson, J. T., 1994. Feeding ecology and condition of larval and pelagic juvenile redfish Sebastes spp. Marine Ecology Progress Series 104: 211–226.CrossRefGoogle Scholar
  2. Chang, W.-B., H.-U. Dahms & L.-C. Tseng, 2010. Copepod assemblages in an embayment of Taiwan during monsoonal transitions. Zoological Studies 49(6): 735–748.Google Scholar
  3. Dahms, H. U., 2000. Phylogenetic implications of the Crustacean nauplius. Advances in copepod taxonomy. Hydrobiologia 417: 91–99.CrossRefGoogle Scholar
  4. Dahms, H. U. & P. Y. Qian, 2004a. Life histories of the Harpacticoida (Copepoda, Crustacea): a comparison with meiofauna and macrofauna. Journal of Natural History 38: 1725–1734.CrossRefGoogle Scholar
  5. Dahms, H. U. & P. Y. Qian, 2004b. Drift pump and drift net. Journal of Experimental Marine Biology and Ecology 301(1): 29–37.CrossRefGoogle Scholar
  6. Dahms, H. U. & P. Y. Qian, 2005. Exposure of biofilms to copepods affects the larval settlement of Hydroides elegans (Polychaeta). Marine Ecology Progress Series 297: 203–214.CrossRefGoogle Scholar
  7. Dahms, H. U. & P. Y. Qian, 2006. Kin-recognition during intraspecific predation of Harpacticus sp. (Copepoda, Harpacticoida)? Zoological Studies 45(3): 395–403.Google Scholar
  8. Dahms, H. U., J. A. Fornshell & B. J. Fornshell, 2006a. Key for the identification of crustacean nauplii. Organisms, Diversity and Evolution 6: 47–56.CrossRefGoogle Scholar
  9. Dahms, H. U., T. Harder & P. Y. Qian, 2006b. Selective attraction and reproductive performance of a harpacticoid copepod in a response to biofilms. Journal of Experimental Marine Biology and Ecology 341: 228–238.CrossRefGoogle Scholar
  10. Duren, L. A. & J. J. Videler, 1995. Swimming behaviour of developmental stages of the calanoid copepod Temora longicornis at different food concentrations. Marine Ecology Progress Series 126: 153–161.CrossRefGoogle Scholar
  11. Ferrari, F. D. & H. U. Dahms, 2007. Postembryonic development of the Copepoda. Crustaceana Monographs 8: 1–232.CrossRefGoogle Scholar
  12. Fortier, L. & A. Villeneuve, 1996. Cannibalism and predation of fish larvae of Atlantic mackerel, Scomber scombrus: trophodynamics and potential impact on recruitment. Fisheries Bulletin US 94: 268–281.Google Scholar
  13. Fortier, L., D. Ponton & M. Gilbert, 1995. The match/mismatch hypothesis and the feeding success of fish larvae in ice-covered southeastern Hudson Bay. Marine Ecology Progress Series 120: 11–27.CrossRefGoogle Scholar
  14. Gerritsen, J. & J. R. Strickler, 1977. Encounter probabilities and community structure in zooplankton: a mathematical model. Journal of the Fishery Research Board of Canada 34: 73–82.Google Scholar
  15. Govoni, J. J. & A. J. Chester, 1990. Diet composition of larval Leiostomus xanthurus in and about the Mississippi River plume. Journal of Plankton Research 12: 819–830.CrossRefGoogle Scholar
  16. Grover, J. J., 1998. Feeding habits of pelagic summer flounder, Paralichthys dentatus, larvae in oceanic and estuarine habitats. Fishery Bulletin US 96: 248–257.Google Scholar
  17. Henriksen, C. I., E. Saiz, A. Calbet & B. W. Hansen, 2007. Feeding activity and swimming patterns of Acartia grani and Oithona davisae nauplii in the presence of motile and non-motile prey. Marine Ecology Progress Series 331: 119–129.CrossRefGoogle Scholar
  18. Hillgruber, N., L. J. Haldorson & A. J. Paul, 1995. Feeding selectivity of larval walleye pollock Theragra chalcogramma in the oceanic domain of the Bering Sea. Marine Ecology Progress Series 120: 1–10.CrossRefGoogle Scholar
  19. Hwang, J. S., 1998. The action patterns of Centropages hamatus using a tethering techniques. Journal of the Fisheries Society of Taiwan 25(1): 57–71.Google Scholar
  20. Hwang, J. S. & J. R. Strickler, 1994. Effects of periodic turbulent events upon escape responses of a calanoid copepod, Centropages hamatus. Bulletin of the Plankton Society of Japan 41(2): 117–130.Google Scholar
  21. Hwang, J. S. & J. R. Strickler, 2001. Can copepods differentiate prey from predator hydromechanically? Zoological Studies 40(1): 1–6.Google Scholar
  22. Hwang, J. S. & J. T. Turner, 1995. Behavior of cyclopoid, harpacticoid and calanoid copepods from coastal waters of Taiwan. Marine Ecology 16(3): 207–216.CrossRefGoogle Scholar
  23. Hwang, J. S., J. T. Turner, J. H. Costello, D. J. Coughlin & J. R. Strickler, 1993. A cinematographic comparison of behavior by the calanoid copepod Centropages hamatus: tethered versus free-swimming animals. Journal of Experimental Marine Biology and Ecology 167: 277–288.CrossRefGoogle Scholar
  24. Hwang, J. S., J. H. Costello & J. R. Strickler, 1994. Copepod grazing in a turbulent flow: elevated foraging behavior and habituation of escape responses. Journal of Plankton Research 16(5): 421–431.CrossRefGoogle Scholar
  25. Hwang, J. S., R. Kumar, C.-W. Hsieh, A. Y. Kuo, S. Souissi, M.-H. Hsu, J.-T. Wu, W.-C. Liu, C.-F. Wang & Q.-C. Chen, 2010. Patterns of zooplankton distribution along the marine, estuarine, and riverine portions of the Danshuei ecosystem in northern Taiwan. Zoological Studies 49(3): 335–352.Google Scholar
  26. Jiang, H. & G. A. Paffenhöfer, 2004. Relation of behavior of copepod juveniles to potential predation by omnivorous copepods: an empirical-modeling study. Marine Ecology Progress Series 278: 225–239.CrossRefGoogle Scholar
  27. Landry, M. R., J. M. Lehner-Fournier & V. L. Fagerness, 1985. Predatory feeding behavior of the marine cyclopoid copepod Corycaeus anglicus. Marine Biology 85: 163–169.CrossRefGoogle Scholar
  28. Lee, C.-S. (ed.), 2005. Copepods in Aquaculture. Blackwell Publishing, Oxford: 269.Google Scholar
  29. Lee, C. H., H.-U. Dahms, S. H. Cheng, S. Souissi, F. G. Schmitt, R. Kumar & J.-S. Hwang, 2011. Mating behavior of Pseudodiaptomus annandalei at calm and hydrodynamically disturbed waters. Marine Biology (in press). doi: 10.1007/s00227-011-1632-8.
  30. Lough, R. G. & D. G. Mountain, 1996. Effect of small-scale turbulence on feeding rates of larval cod and haddock in stratified water on Georges-Bank. Deep-Sea Research Part II-Topical Studies in Oceanography 43: 1745–1772.CrossRefGoogle Scholar
  31. Mazzocchi, M. G. & G. A. Paffenhöfer, 1999. Swimming and feeding behaviour of the planktonic copepod Clausocalanus furcatus. Journal of Plankton Research 21: 1501–1518.CrossRefGoogle Scholar
  32. Paffenhöfer, G. A., 1993. On the ecology of marine cyclopoid copepods (Crustacea, Copepoda). Journal of Plankton Research 15: 37–55.CrossRefGoogle Scholar
  33. Paffenhöfer, G. A., 1998. On the relation of structure, perception and activity in marine planktonic copepods. Journal of Marine Systems 15: 457–473.CrossRefGoogle Scholar
  34. Paffenhöfer, G. A. & K. D. Lewis, 1989. Feeding behavior of nauplii of the genus Eucalanus (Copepoda, Calanoida). Marine Ecology Progress Series 57: 129–136.CrossRefGoogle Scholar
  35. Paffenhöfer, G. A. & K. D. Lewis, 1990. Perceptive performance and feeding behavior of calanoid copepods. Journal of Plankton Research 12: 933–946.CrossRefGoogle Scholar
  36. Paffenhöfer, G. A. & M. G. Mazzocchi, 2002. On some aspects of the behaviour of Oithona plumifera (Copepoda: Cyclopoida). Journal of Plankton Research 24: 129–135.CrossRefGoogle Scholar
  37. Paffenhöfer, G. A., J. R. Strickler, K. D. Lewis & S. Richman, 1996. Motion behavior of nauplii and early copepodid stages of marine planktonic copepods. Journal of Plankton Research 18: 1699–1715.CrossRefGoogle Scholar
  38. Ringuette, M., M. Castonguay, J. A. Runge & F. Grégoire, 2002. Atlantic mackerel (Scomber scombrus) recruitment fluctuations in relation to copepod production and juvenile growth. Canadian Journal of Fisheries and Aquatic Sciences 59: 646–656.CrossRefGoogle Scholar
  39. Roff, J. C., J. T. Turner, M. K. Webber & R. R. Hopcroft, 1995. Bacterivory by tropical copepod nauplii: extent and possible significance. Aquatic Microbial Ecology 9: 165–175.CrossRefGoogle Scholar
  40. Seuront, L., J. S. Hwang, L. C. Tseng, F. G. Schmitt, S. Souissi & C. K. Wong, 2004. Individual variability in the swimming behavior of the sub-tropical copepod Oncaea venusta (Copepoda: Poecilostomatoida). Marine Ecology Progress Series 83: 199–217.CrossRefGoogle Scholar
  41. Shih, M. C. & J. S. Hwang, 2000. Modified phase contrast microscopy and its applications to the observation of marine biological objects. Journal of Marine Science and Technology 8(1): 61–64.Google Scholar
  42. Strickler, J. R. & J. S. Hwang, 1999. Matched spatial filters in long working distance microscopy of phase objects. In Wu, J. L., P. P. Hwang, G. Wong, H. Kim & P. C. Cheng (eds), Focus on Multidimensional Microscopy, Vol. 2. World Scientific Publishing Co., Singapore: 217–239.Google Scholar
  43. Sundby, S. & P. Fossum, 1990. Feeding conditions of Arcto-Norwegian cod larvae compared with the Rothschild-Osborn theory on small-scale turbulence and plankton contact rates. Journal of Plankton Research 12: 1153–1162.CrossRefGoogle Scholar
  44. Svensen, C. & T. Kiørboe, 2000. Remote prey detection in Oithona similis: hydromechanical versus chemical cues. Journal of Plankton Research 22: 1155–1166.CrossRefGoogle Scholar
  45. Tiselius, P., P. R. Jonsson, S. Karrtvedt, E. M. Olsen & T. Jordstad, 1997. Effects of copepod foraging behavior on predation risk: an experimental study of the predatory copepod Pareuchaeta norvegica feeding on Acartia clausi and A. tonsa (Copepoda). Limnology and Oceanography 42: 164–170.CrossRefGoogle Scholar
  46. Titelman, J., 2001. Swimming and escape behavior of copepod nauplii: implications for predator-prey interactions among copepods. Marine Ecology Progress Series 213: 203–213.CrossRefGoogle Scholar
  47. Titelman, J. & T. Kiørboe, 2003. Motility of copepod nauplii and implications for food encounter. Marine Ecology Progress Series 247: 123–135.CrossRefGoogle Scholar
  48. Tseng, L.-C., R. Kumar, H.-U. Dahms, Q.-C. Chen & J.-S. Hwang, 2008. Monsoon-driven succession of copepod assemblages in coastal waters of the northwestern Taiwan Strait. Zoological Studies 47(1): 46–60.Google Scholar
  49. Turner, J. T. & P. A. Tester, 1992. Zooplankton feeding ecology: bacterivory by metazoan microzooplankton. Journal of Experimental Marine Biology and Ecology 160: 149–167.CrossRefGoogle Scholar
  50. Turner, J. T., H. Levinsen, T. G. Nielsen & B. W. Hansen, 2001a. Zooplankton feeding ecology: grazing on phytoplankton and predation on protozoans by copepod and barnacle nauplii in Disko Bay, West Greenland. Marine Ecology Progress Series 221: 209–219.CrossRefGoogle Scholar
  51. Turner, J. T., A. Ianora, A. Miralto, M. Laabir & F. Esposito, 2001b. Decoupling of copepod grazing rates, fecundity and egg-hatching success on mixed and alternating diatom and dinoflagellate diets. Marine Ecology Progress Series 220: 187–199.CrossRefGoogle Scholar
  52. Uchima, M. & R. Hirano, 1988. Swimming behavior of the marine copepod Oithona davisae: internal control and search for environment. Marine Biology 99: 47–56.CrossRefGoogle Scholar
  53. Vandromme, P., F. G. Schmitt, S. Souissi, E. J. Buskey, J. R. Strickler, C.-H. Wu & J.-S. Hwang, 2010. Symbolic analysis of plankton swimming trajectories: case study with Strobilidium sp. (Protista) helical walking under various food conditions. Zoological Studies 49(3): 289–303.Google Scholar
  54. Vanduren, L. A. & J. J. Videler, 1995. Swimming behavior of developmental stages of the calanoid copepod Temora longicornis at different food concentrations. Marine Ecology-Progress Series 126: 153–161.CrossRefGoogle Scholar
  55. Wu, C.-H., H.-U. Dahms, E. J. Buskey, J. R. Strickler & J.-S. Hwang, 2010. Behavioral interactions of copepod Temora turbinata with potential ciliate prey. Zoological Studies 49(2): 157–168.Google Scholar
  56. Yen, J. & D. M. Fields, 1992. Escape responses of Acartia hudsonica (Copepoda) nauplii from the flow field of Temora longicornis (Copepoda). Archiv fuer Hydrobiologie. Beihefte zu Ergebnissen der Limnologie 36: 123–134.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • C.-H. Wu
    • 1
  • H.-U. Dahms
    • 3
  • S.-H. Cheng
    • 2
  • J.-S. Hwang
    • 1
    Email author
  1. 1.Institute of Marine BiologyNational Taiwan Ocean UniversityKeelungTaiwan
  2. 2.Biotechnology DivisionFisheries Research InstituteTong-gangTaiwan
  3. 3.Green Life Science Department, College of Natural ScienceSangmyung UniversitySeoulSouth Korea

Personalised recommendations