Advertisement

Hydrobiologia

, Volume 665, Issue 1, pp 1–13 | Cite as

Comparison of snail density, standing stock, and body size between Caribbean karst wetlands and other freshwater ecosystems

  • Clifton B. Ruehl
  • Joel C. Trexler
Review paper

Abstract

Synthesizing data from multiple studies generates hypotheses about factors that affect the distribution and abundance of species among ecosystems. Snails are dominant herbivores in many freshwater ecosystems, but there is no comprehensive review of snail density, standing stock, or body size among freshwater ecosystems. We compile data on snail density and standing stock, estimate body size with their quotient, and discuss the major pattern that emerges. We report data from 215 freshwater ecosystems taken from 88 studies that we placed into nine categories. Sixty-five studies reported density, seven reported standing stock, and 16 reported both. Despite the breadth of studies, spatial and temporal sampling scales were limited. Researchers used 25 different sampling devices ranging in area from 0.0015 to 2.5 m2. Most ecosystem categories had similar snail densities, standing stocks, and body sizes suggesting snails shared a similar function among ecosystems. Caribbean karst wetlands were a striking exception with much lower density and standing stock, but large body size. Disparity in body size results from the presence of ampullariids in Caribbean karst wetlands suggesting that biogeography affects the distribution of taxa, and in this case size, among aquatic ecosystems. We propose that resource quality explains the disparity in density and standing stock between Caribbean karst wetlands and other categories. Periphyton in Caribbean karst wetlands has high carbon-to-phosphorous ratios and defensive characteristics that inhibit grazers. Unlike many freshwater ecosystems where snails are key grazers, we hypothesize that a microbial loop captures much of the primary production in Caribbean karst wetlands.

Keywords

Cross-system comparison Energy flow Body size Biomass Everglades Food webs Grazing Microbial loop 

Notes

Acknowledgments

We thank Luis Zambrano, UNAM, for access to Sian Ka’an Biosphere Reserve and Lamani Outpost lodge personnel for access to Belizean wetlands. Bill Loftus, Josette LaHee, and Evelyn Gaiser helped with fieldwork in Belize and Mexico. Andy Turner and Don Uzarski provided un-published data that greatly improved our work. We appreciate all authors that provided insight into their collection schemes, sampling methods, and ecosystem descriptions, particularly Alexander Huryn for information on stream order in Alabama. Christer Brönmark provided unpublished length-weight regressions. An early version of this manuscript was greatly improved by comments from the Trexler lab group, Tim Collins, Evelyn Gaiser, Mary Power, Walter Hill, and Heather Vance-Chalcraft. A Judith Evans Parker Travel Fellowship and an Everglades Foundation Fellowship provided funding to CBR, while JCT received funds from the South East Environmental Research Center endowment and the National Science Foundation grant to the Florida Coastal Everglades Long-Term Ecological Research program under Grant No. DBI-0620409 and Grant No. DEB-9910514. This is publication number 512 of the Southeast Environmental Research Center at Florida International University.

Supplementary material

10750_2011_612_MOESM1_ESM.pdf (99 kb)
Supplementary material 1 (PDF 100 kb)

References

  1. Adams, D. C. & J. O. Church, 2008. Amphibians do not follow Bergmann’s rule. Evolution 62: 413–420.PubMedCrossRefGoogle Scholar
  2. Alexander, J. E. & A. P. Covich, 1991. Predation risk and avoidance behavior in two freshwater snails. Biological Bulletin 180: 387–393.CrossRefGoogle Scholar
  3. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyerreil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology-Progress Series 10: 257–263.CrossRefGoogle Scholar
  4. Belk, M. C. & D. D. Houston, 2002. Bergmann’s rule in ecotherms: a test using freshwater fishes. American Naturalist 160: 803–808.PubMedCrossRefGoogle Scholar
  5. Bennetts, R. E., P. C. Darby & L. B. Karunaratne, 2006. Foraging patch selection by Snail Kites in response to vegetation structure and prey abundance and availability. Waterbirds 29: 88–94.CrossRefGoogle Scholar
  6. Bernot, R. J. & A. M. Turner, 2001. Predator identity and trait-mediated indirect effects in a littoral food web. Oecologia 129: 139–146.CrossRefGoogle Scholar
  7. Blackburn, T. M., K. J. Gaston & N. Loder, 1999. Geographic gradients in body size: a clarification of Bergmann’s rule. Diversity and Distributions 5: 165–174.CrossRefGoogle Scholar
  8. Boss, K. J., 1974. Oblomovism in the Mollusca. Transactions of the American Microscopical Society 93: 460–481.PubMedCrossRefGoogle Scholar
  9. Brönmark, C., 1989. Interactions between epiphytes, macrophytes and fresh-water snails—a review. Journal of Molluscan Studies 55: 299–311.CrossRefGoogle Scholar
  10. Brönmark, C. & B. Malmqvist, 1986. Interactions between the leech Glossiphonia complanata and its gastropod prey. Oecologia 69: 268–276.CrossRefGoogle Scholar
  11. Brönmark, C. & S. E. B. Weisner, 1996. Decoupling of cascading trophic interactions in a freshwater, benthic food chain. Oecologia 108: 534–541.CrossRefGoogle Scholar
  12. Brönmark, C., S. P. Klosiewski & R. A. Stein, 1992. Indirect effects of predation in a freshwater, benthic food chain. Ecology 73: 1662–1674.CrossRefGoogle Scholar
  13. Browder, J. A., P. J. Gleason & D. R. Swift, 1994. Periphyton in the Everglades: spatial variation, environmental correlates, and ecological implications. In Davis, S. M. & J. C. Ogden (eds), Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Del Ray Beach: 379–418.Google Scholar
  14. Brown, K. M. & D. R. Devries, 1985. Predation and the distribution and abundance of a pulmonate pond snail. Oecologia 66: 93–99.CrossRefGoogle Scholar
  15. Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.CrossRefGoogle Scholar
  16. Chase, J. M., 1999. To grow or to reproduce? The role of life-history plasticity in food web dynamics. American Naturalist 154: 571–586.PubMedCrossRefGoogle Scholar
  17. Chick, J. H., C. R. Ruetz & J. C. Trexler, 2004. Spatial scale and abundance patterns of large fish communities in freshwater marshes of the Florida Everglades. Wetlands 24: 652–664.CrossRefGoogle Scholar
  18. Chick, J. H., P. Geddes & J. C. Trexler, 2008. Periphyton mat structure mediates trophic interactions in a subtropical marsh. Wetlands 28: 378–389.CrossRefGoogle Scholar
  19. Cohen, J. E., T. Jonsson & S. R. Carpenter, 2003. Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences of the United States of America 100: 1781–1786.PubMedCrossRefGoogle Scholar
  20. Costil, K. & J. Daguzan, 1995. Comparative life cycle and growth of two freshwater gastropod species, Planorbarius corneus (L.) and Planorbis planorbis (L.). Malacologia 37: 53–68.Google Scholar
  21. Cowie, R. H., 2002. Apple snails (Ampullariidae) as agricultural pests: their biology, impacts and management. In Barker, G. M. (ed.), Molluscs as Crop Pests. CABI Publishing, Wallingford.Google Scholar
  22. Crowl, T. A., 1990. Life-history strategies of a freshwater snail in response to stream permanence and predation: balancing conflicting demands. Oecologia 84: 238–243.Google Scholar
  23. Crowl, T. A. & A. P. Covich, 1990. Predator-induced life-history shifts in a freshwater snail. Science 247: 949–951.PubMedCrossRefGoogle Scholar
  24. Darby, P. C., R. E. Bennetts, J. D. Croop, P. L. Valentine-Darby & W. M. Kitchens, 1999. A comparison of sampling techniques for quantifying abundance of the Florida apple snail (Pomacea paludosa Say). Journal of Molluscan Studies 65: 195–208.CrossRefGoogle Scholar
  25. Dillon, R. T., 2000. The Ecology of Freshwater Molluscs. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  26. Dorn, N. J., J. C. Trexler & E. E. Gaiser, 2006. Exploring the role of large predators in marsh food webs: evidence for a behaviorally-mediated trophic cascade. Hydrobiologia 569: 375–386.CrossRefGoogle Scholar
  27. Eckblad, J. W., 1976. Biomass and energy transfer by a specialized predator of aquatic snails. Freshwater Biology 6: 19–21.CrossRefGoogle Scholar
  28. Eisenberg, J. F., 1979. Vertebrate Ecology in the Northern Neotropics. Smithsonian Institution Press, Washington.Google Scholar
  29. Elser, J. J., R. W. Sterner, A. E. Galford, T. H. Chrzanowski, D. L. Findlay, K. H. Mills, M. J. Paterson, M. P. Stainton & D. W. Schindler, 2000. Pelagic C:N:P stoichiometry in a eutrophied lake: responses to a whole-lake food-web manipulation. Ecosystems 3: 293–307.CrossRefGoogle Scholar
  30. Eversole, A. G., 1978. Life cycles, growth and population bioenergetics in the snail Helisoma trivolvis (Say). Journal of Molluscan Studies 44: 209–222.Google Scholar
  31. Feminella, J. W. & C. P. Hawkins, 1995. Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. Journal of the North American Benthological Society 14: 465–509.CrossRefGoogle Scholar
  32. Fretter, V. & J. Peake, 1979. Pulmonates. Academic Press, New York.Google Scholar
  33. Frost, P. C., R. S. Stelzer, G. A. Lamberti & J. J. Elser, 2002. Ecological stoichiometry of trophic interactions in the benthos: understanding the role of C:N:P ratios in lentic and lotic habitats. Journal of the North American Benthological Society 21: 515–528.CrossRefGoogle Scholar
  34. Frost, P. C., H. Hillebrand & M. Kahlert, 2005. Low algal carbon content and its effect on the C:P stoichiometry of periphyton. Freshwater Biology 50: 1800–1807.CrossRefGoogle Scholar
  35. Gaiser, E. E., J. H. Richards, J. C. Trexler, R. D. Jones & D. L. Childers, 2006. Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limnology and Oceanography 51: 617–630.CrossRefGoogle Scholar
  36. Geddes, P. & J. C. Trexler, 2003. Uncoupling of omnivore-mediated positive and negative effects on periphyton mats. Oecologia 136: 585–595.PubMedCrossRefGoogle Scholar
  37. Goldsborough, L. G. & G. G. C. Robinson, 1996. Pattern in wetlands. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal ecology: Freshwater Benthic Ecosystems. Academic Press, New York: 78–117.Google Scholar
  38. Grime, J. P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111: 1169–1194.CrossRefGoogle Scholar
  39. Grimm, N. B. & S. G. Fisher, 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. Journal of the North American Benthological Society 8: 293–307.CrossRefGoogle Scholar
  40. Gruner, D. S., J. E. Smith, E. W. Seabloom, S. A. Sandin, J. T. Ngai, H. Hillebrand, W. S. Harpole, J. J. Elser, E. E. Cleland, M. E. S. Bracken, E. T. Borer & B. M. Bolker, 2008. A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecology Letters 11: 740–755.PubMedCrossRefGoogle Scholar
  41. Hairston, N. G. & N. G. Hairston, 1993. Cause-effect relationships in energy-flow, trophic structure, and interspecific interactions. American Naturalist 142: 379–411.CrossRefGoogle Scholar
  42. Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control, and competition. American Naturalist 94: 421–425.CrossRefGoogle Scholar
  43. Hall, R. O. & J. L. Meyer, 1998. The trophic significance of bacteria in a detritus-based stream food web. Ecology 79: 1995–2012.CrossRefGoogle Scholar
  44. Harvey, J. W. & P. V. McCormick, 2009. Groundwater’s significance to changing hydrology, water chemistry, and biological communities of a floodplain ecosystem, Everglades, South Florida, USA. Hydrogeology Journal 17: 185–201.Google Scholar
  45. Heeg, J., 1977. Oxygen consumption and the use of metabolic reserves during starvation and aestivation in Bulinus (Physopisis) africanus (Pulmonata: Planorbidae). Malacologia 16: 549–560.PubMedGoogle Scholar
  46. Hershey, A. E., 1990. Snail populations in arctic lakes: competition mediated by predation. Oecologia 82: 26–32.CrossRefGoogle Scholar
  47. Hill, W. R., 1992. Food limitation and interspecific competition in snail-dominated streams. Canadian Journal of Fisheries and Aquatic Sciences 49: 1257–1267.CrossRefGoogle Scholar
  48. Hill, W. R., M. G. Ryon & E. M. Schilling, 1995. Light limitation in a stream ecosystem: responses by primary producers and consumers. Ecology 76: 1297–1309.CrossRefGoogle Scholar
  49. Hillebrand, H., M. Kahlert, A. L. Haglund, U. G. Berninger, S. Nagel & S. Wickham, 2002. Control of microbenthic communities by grazing and nutrient supply. Ecology 83: 2205–2219.CrossRefGoogle Scholar
  50. Hunter, R. D., 1975. Growth, fecundity, and bioenergetics in three populations of Lymnaea palustris in Upstate New York. Ecology 56: 50–63.CrossRefGoogle Scholar
  51. Huntly, N., 1991. Herbivores and the dynamics of communities and ecosystems. Annual Review of Ecology and Systematics 22: 477–503.CrossRefGoogle Scholar
  52. Huryn, A. D., A. C. Benke & G. M. Ward, 1995. Direct and indirect effects of geology on the distribution and production of the freshwater snail Elimia. Journal of the North American Benthological Society 14: 519–534.CrossRefGoogle Scholar
  53. Karunaratne, L. B., P. C. Darby & R. E. Bennetts, 2006. The effects of wetland habitat structure on Florida apple snail density. Wetlands 26: 1143–1150.CrossRefGoogle Scholar
  54. Kesler, D. K. & W. R. Munns, 1989. Predation by Belostoma flumineum (Hemiptera): an important cause of mortality in freshwater snails. Journal of the North American Benthological Society 8: 342–350.CrossRefGoogle Scholar
  55. King, R. S. & C. J. Richardson, 2007. Subsidy-stress response of macroinvertebrate community biomass to a phosphorus gradient in an oligotrophic wetland ecosystem. Journal of the North American Benthological Society 26: 491–508.CrossRefGoogle Scholar
  56. Kushlan, J., 1975. Population changes of apple snail, Pomacea paludosa, in the southern Everglades. Nautilus 89: 21–23.Google Scholar
  57. Lewis, D. B., 2001. Trade-offs between growth and survival: responses of freshwater snails to predacious crayfish. Ecology 82: 758–765.CrossRefGoogle Scholar
  58. Lindsey, C. C., 1966. Body size of poikilotherm vertebrates at different latitudes. Evolution 20: 456–465.CrossRefGoogle Scholar
  59. Lodge, D. M., K. M. Brown, S. P. Klosiewski, R. A. Stein, A. P. Covich, B. K. Leathers & C. Brönmark, 1987. Distribution of freshwater snails: spatial scale and the relative importance of physicochemical and biotic factors. American Malacological Bulletin 5: 73–84.Google Scholar
  60. Lodge, D. M., M. W. Kershner, J. E. Aloi & A. P. Covich, 1994. Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web. Ecology 75: 1265–1281.CrossRefGoogle Scholar
  61. Mayr, E., 1956. Geographical character gradients and climatic adaptation. Evolution 10: 105–108.CrossRefGoogle Scholar
  62. McCormick, P. V. & R. J. Stevenson, 1989. Effects of snail grazing on benthic algal community structure in different nutrient environments. Journal of the North American Benthological Society 8: 162–172.CrossRefGoogle Scholar
  63. McCormick, P. V. & R. J. Stevenson, 1991. Grazer control of nutrient availability in the periphyton. Oecologia 86: 287–291.CrossRefGoogle Scholar
  64. Mousseau, T. A., 1997. Ectotherms follow the converse to Bergmann’s rule. Evolution 51: 630–632.CrossRefGoogle Scholar
  65. Newbold, J. D., J. W. Elwood, R. V. O’Neill & A. L. Sheldon, 1983. Phosphorus dynamics in a woodland stream ecosystem: a study of nutrient spiraling. Ecology 64: 1249–1265.CrossRefGoogle Scholar
  66. Osenberg, C. W., R. J. Schmitt, S. J. Holbrook, K. E. Abusaba & A. R. Flegal, 1994. Detection of environmental impacts: natural variability, effect size, and power analysis. Ecological Applications 4: 16–30.CrossRefGoogle Scholar
  67. Peters, R. H., 1983. Ecological Implications of Body Size. Cambridge University Press, Cambridge.Google Scholar
  68. Power, M. E., 1992. Top-down and bottom-up forces in food webs: do plants have primacy. Ecology 73: 733–746.CrossRefGoogle Scholar
  69. Power, M. E., A. J. Stewart & W. J. Matthews, 1988. Grazer control of algae in an Ozark mountain stream—effects of short-term exclusion. Ecology 69: 1894–1898.CrossRefGoogle Scholar
  70. Price, R. M., 2001. Geochemical Determinations of Groundwater Flow in Everglades National Park. Marine Geology and Geophysics, University of Miami, Coral Gables: 307.Google Scholar
  71. Reed, W. L. & F. J. Janzen, 1999. Natural selection by avian predators on size and colour of a freshwater snail (Pomacea flagellata). Biological Journal of the Linnean Society 67: 331–342.Google Scholar
  72. Rejmankova, E., J. Komarek & J. Komarkova, 2004. Cyanobacteria—a neglected component of biodiversity: patterns of species diversity in inland marshes of northern Belize (Central America). Diversity and Distributions 10: 189–199.CrossRefGoogle Scholar
  73. Rosemond, A. D., 1994. Multiple factors limit seasonal-variation in periphyton in a forest stream. Journal of the North American Benthological Society 13: 333–344.CrossRefGoogle Scholar
  74. Rosemond, A. D., P. J. Mulholland & J. W. Elwood, 1993. Top-down and bottom-up control of stream periphyton: effects of nutrients and herbivores. Ecology 74: 1264–1280.CrossRefGoogle Scholar
  75. Saint-Germain, M., C. M. Buddle, M. Larrivee, A. Mercado, T. Motchula, E. Reichert, T. E. Sackett, Z. Sylvain & A. Webb, 2007. Should biomass be considered more frequently as a currency in terrestrial arthropod community analyses? Journal of Applied Ecology 44: 330–339.CrossRefGoogle Scholar
  76. Schmitter-Soto, J. J., F. A. Comín, E. Escobar-Briones, J. Herrera-Silveira, J. Alcocer, E. Suárez-Morales, M. Elías-Gutierrez, V. Díaz-Arce, L. E. Marín & B. Steinich, 2002. Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia 467: 215–228.CrossRefGoogle Scholar
  77. Shurin, J. B., E. T. Borer, E. W. Seabloom, K. Anderson, C. A. Blanchette, B. Broitman, S. D. Cooper & B. S. Halpern, 2002. A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters 5: 785–791.CrossRefGoogle Scholar
  78. Singurindy, O. & B. Berkowitz, 2004. Carbonate dissolution and precipitation in coastal environments: Laboratory analysis and theoretical consideration. Water Resources Research 40: W04401.CrossRefGoogle Scholar
  79. Snyder, N. F. R. & H. A. Snyder, 1969. A comparative study of mollusk predation by limpkins, Everglade kites, and boat-tailed grackles. Living Bird 8: 177–223.Google Scholar
  80. Sousa, W. P., 1984. The role of disturbance in natural communities. Annual Review of Ecology and Systematics 15: 353–391.CrossRefGoogle Scholar
  81. Steinman, A. D., 1996. Effects of grazers on freshwater benthic algae. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego: 341–373.CrossRefGoogle Scholar
  82. Stewart, T. W. & J. E. Garcia, 2002. Environmental factors causing local variation in density and biomass of the snail Leptoxis carinata, in Fishpond Creek, Virginia. American Midland Naturalist 148: 172–180.CrossRefGoogle Scholar
  83. Tibbets, T. M., A. C. Krist, R. O. Hall & L. A. Riley, 2010. Phosphorous-mediated changes in life history traits of the invasive New Zealand mudsnail (Potamopyrgus antipodarum). Oecologia 163: 549–559.PubMedCrossRefGoogle Scholar
  84. Turner, A. M. & M. F. Chislock, 2007. Dragonfly predators influence biomass and density of pond snails. Oecologia 153: 407–415.PubMedCrossRefGoogle Scholar
  85. Turner, A. M., J. C. Trexler, C. F. Jordan, S. J. Slack, P. Geddes, J. H. Chick & W. F. Loftus, 1999. Targeting ecosystem features for conservation: standing crops in the Florida Everglades. Conservation Biology 13: 898–911.CrossRefGoogle Scholar
  86. Underwood, G. J. C. & J. D. Thomas, 1990. Grazing interactions between pulmonate snails and epiphytic algae and bacteria. Freshwater Biology 23: 505–522.CrossRefGoogle Scholar
  87. Vaughn, C. C., F. P. Gelwick & W. J. Matthews, 1993. Effects of algivorous minnows on production of grazing stream invertebrates. Oikos 66: 119–128.CrossRefGoogle Scholar
  88. Vymazal, J., 1995. Algae and Element Cycling in Wetlands. CRC Press, Boca Raton: 689.Google Scholar
  89. Wellborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337–363.CrossRefGoogle Scholar
  90. White, E. P., S. K. M. Ernest, A. J. Kerkhoff & B. J. Enquist, 2007. Relationships between body size and abundance in ecology. Trends in Ecology & Evolution 22: 323–330.CrossRefGoogle Scholar
  91. Wicks, C. M., J. S. Herman, A. F. Randazzo & J. L. Jee, 1995. Water-rock interactions in a modern coastal mixing zone. Geological Society of America Bulletin 107: 1023–1032.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Biological SciencesFlorida International UniversityNorth MiamiUSA
  2. 2.Department of BiologyEast Carolina UniversityGreenvilleUSA

Personalised recommendations