, Volume 664, Issue 1, pp 95–105

Differential responses of Myriophyllum alterniflorum DC (Haloragaceae) organs to copper: physiological and developmental approaches

  • David Delmail
  • Pascal Labrousse
  • Philippe Hourdin
  • Laure Larcher
  • Christian Moesch
  • Michel Botineau
Primary research paper


Copper is an essential element for the function of metabolic pathways in many living organisms like photosynthesis in plants. But, for the last decades, anthropogenic sources and release of Cu lead to environmental pollution particularly in aquatic ecosystems. The aquatic plant, Myriophyllum alterniflorum, known as a bioindicator of metal pollution, could be used as biomonitor. The aim of this study is to evaluate biomarkers responses of watermilfoil during Cu pollution at high environmental levels (100 μg l−1 CuSO4) in controlled conditions. Morphological and anatomical features like a new double endodermis (DE) layer were evidenced in response to Cu treatment. Moreover, physiological parameters like pigments contents, osmotic potential and proline content present a differential response to Cu stress in young and old leaves of watermilfoil. Finally, despite a rapid and strong phytoaccumulation of Cu, only young leaves are slightly affected in their cell membrane integrity as indicated by MDA content. In comparison with the Cu effect on other aquatic macrophytes, M. alterniflorum develops particular protection mechanisms like the ROS scavenging using proline rather than carotenoids, the reduction of water loss with the DE and the heavy metal elimination through senescence to protect preferentially the photosynthetic components of the young leaves and the main-stem elongation. Due to its Cu sensitivity, M. alterniflorum appears as important in the field of environmental studies using plant biomarkers.


Myriophyllum alterniflorum Copper Heavy metals Ontogeny Oxidative stress Double endodermis 


  1. Ahmad, S. H., Z. Reshi, J. Ahmad & M. Iqbal, 2005. Morpho-anatomical responses of Trigonella foenum graecum Linn. to induced cadmium and lead stress. Journal of Plant Biology 48: 64–84.CrossRefGoogle Scholar
  2. Ashraf, M. & M. R. Foolad, 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59: 206–216.CrossRefGoogle Scholar
  3. Balaganskaya, E. D. & O. V. Kudrjavtseva, 1998. Change of the morphological structure of leaves of Vaccinium vitis-idaea caused by heavy metal pollution. Chemosphere 36: 721–726.CrossRefGoogle Scholar
  4. Banas, D., B. Marin, S. Skraber, E. I. B. Chopin & A. Zanella, 2010. Copper mobilization affected by weather conditions in a stormwater detention system receiving runoff waters from vineyard soils (Champagne, France). Environmental Pollution 158: 476–482.PubMedCrossRefGoogle Scholar
  5. Bates, L. S., R. P. Waldren & I. D. Teare, 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39: 205–207.CrossRefGoogle Scholar
  6. Bhakuni, G., B. K. Dube, P. Sinha & C. Chatterjee, 2009. Copper stress affects metabolism and reproductive yield of chickpea. Journal of Plant Nutrition 32: 703–711.CrossRefGoogle Scholar
  7. Chatenet, P., D. Froissard, J. Cook-Moreau, P. Hourdin, A. Ghestem, M. Botineau & J. Haury, 2006. Populations of Myriophyllum alterniflorum L. as bioindicators of pollution in acidic to neutral rivers in the Limousin region. Hydrobiologia 570: 61–65.CrossRefGoogle Scholar
  8. Dalla Vecchia, F., F. Cuccato, N. La Rocca, W. Larcher & N. Rascio, 1999. Endodermis-like sheaths in the submerged freshwater macrophyte Ranunculus trichophyllus Chaix. Annals of Botany 83: 93–97.CrossRefGoogle Scholar
  9. Degenhardt, B. & H. Gimmler, 2000. Cell wall adaptations to multiple environmental stresses in maize roots. Journal of Experimental Botany 344: 595–603.CrossRefGoogle Scholar
  10. Demars, B. O. L. & A. C. Edwards, 2009. Distribution of aquatic macrophytes in contrasting river systems: a critique of compositional-based assessment of water quality. Science of the Total Environment 407: 975–990.PubMedCrossRefGoogle Scholar
  11. Fish, D. A. & H. J. Earl, 2009. Water-use efficiency is negatively correlated with leaf epidermal conductance in cotton (Gossypium spp.). Crop Science 49: 1409–1415.CrossRefGoogle Scholar
  12. Giugliano, D., 2000. Dietary antioxidants for cardiovascular prevention. Nutrition, Metabolism and Cardiovascular Diseases 10: 38–44.Google Scholar
  13. Greger, M., 1999. Heavy Metal Stress in Plants: From Molecules to Ecosystems. Springer Verlag, Berlin.Google Scholar
  14. Heath, R. L. & L. Packer, 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189–198.PubMedCrossRefGoogle Scholar
  15. Hermle, S., P. Vollenweider, M. S. Günthardt-Goerg, C. J. Mcquattie & R. Matyssek, 2007. Leaf responsiveness of Populus tremula and Salix viminalis to soil contaminated with heavy metals and acidic rainwater. Tree Physiology 27: 1517–1531.PubMedGoogle Scholar
  16. Hose, E., D. T. Clarkson, E. Steudle, L. Schreiber & W. Hartung, 2001. The exodermis: a variable apoplastic barrier. Journal of Experimental Botany 52: 2245–2264.PubMedCrossRefGoogle Scholar
  17. Howe, P. D., G. C. Becking, P. Callan, C. Dameron & L. Tomaska, 1998. Environmental Health Criteria 200: copper. Environmental Health Criteria 200: 1–11.Google Scholar
  18. Ippolito, M. P., C. Fasciano, L. D’Aquino, M. Morgana & F. Tommasi, 2010. Responses of antioxidant systems after exposition to rare earths and their role in chilling stress in common duckweed (Lemna minor L.): a defensive weapon or a boomerang? Archives of Environmental Contamination and Toxicology 58: 42–52.PubMedCrossRefGoogle Scholar
  19. Jain, P., S. Kachhwaha & S. L. Kothari, 2009. Improved micropropagation protocol and enhancement in biomass and chlorophyll content in Stevia rebaudiana (Bert.) Bertoni by using high copper levels in the culture medium. Scientia Horticulturae 119: 315–319.CrossRefGoogle Scholar
  20. Kaul, S., S. S. Sharma & I. K. Mehta, 2008. Free radical scavenging potential of l-proline: evidence from in vitro assays. Amino Acids 34: 315–320.PubMedCrossRefGoogle Scholar
  21. Lichtenthaler, H. K. & A. R. Wellburn, 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11: 591–592.Google Scholar
  22. Markich, S. J., A. R. King & S. P. Wilson, 2006. Non-effect of water hardness on the accumulation and toxicity of copper in a freshwater macrophyte (Ceratophyllum demersum): how useful are hardness-modified copper guidelines for protecting freshwater biota? Chemosphere 65: 1791–1800.PubMedCrossRefGoogle Scholar
  23. Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405–410.PubMedCrossRefGoogle Scholar
  24. Murashige, T. & F. Skooge, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 472–497.CrossRefGoogle Scholar
  25. Ngayila, N., M. Botineau, M. Baudu & J. P. Basly, 2009. Myriophyllum alterniflorum DC. Effect of low concentrations of copper and cadmium on somatic and photosynthetic endpoints: a chemometric approach. Ecological Indicators 9: 307–312.CrossRefGoogle Scholar
  26. Nimptsch, J., D. A. Wunderlin, A. Dollan & S. Pflugmacher, 2005. Antioxidant and biotransformation enzymes in Myriophyllum quitense as biomarkers of heavy metal exposure and eutrophication in Suquía River basin (Córdoba, Argentina). Chemosphere 61: 147–157.PubMedCrossRefGoogle Scholar
  27. Panou-Filotheou, H., A. M. Bosabalidis & S. Karataglis, 2001. Effects of copper toxicity on leaves of oregano (Origanum vulgare subsp. hirtum). Annals of Botany 88: 207–214.CrossRefGoogle Scholar
  28. Panou-Filotheou, H. & A. M. Bosabalidis, 2004. Root structural aspects associated with copper toxicity in oregano (Origanum vulgare subsp. hirtum). Plant Science 166: 1497–1504.CrossRefGoogle Scholar
  29. Pearson, K., 1896. Mathematical contributions to the theory of evolution III: regression, heredity and panmixia. Philosophical Transactions of the Royal Society of London 187: 253–318.Google Scholar
  30. Peng, H.-Y., X.-E. Yang, M.-J. Yang & S.-K. Tian, 2006. Responses of antioxidant enzyme system to copper toxicity and copper detoxification in the leaves of Elsholtzia splendens. Journal of Plant Nutrition 29: 1619–1635.CrossRefGoogle Scholar
  31. Pérez-Tornero, O., C. I. Tallón, I. Porras & J. M. Navarro, 2009. Physiological and growth changes in micropropagated Citrus macrophylla explants due to salinity. Journal of Plant Physiology 166: 1923–1933.PubMedCrossRefGoogle Scholar
  32. Pillitteri, L. J., N. L. Bogenschutz & K. U. Torii, 2008. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in arabidopsis. Plant and Cell Physiology 49: 934–943.PubMedCrossRefGoogle Scholar
  33. Porra, R. J., 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research 73: 149–156.PubMedCrossRefGoogle Scholar
  34. Raeini-Sarjaz, M., N. N. Barthakur, N. P. Arnold & P. J. H. Jones, 1998. Water stress, water use efficiency, carbon isotope discrimination and leaf gas exchange relationships of the bush bean. Journal of Agronomy and Crop Science 180: 173–179.CrossRefGoogle Scholar
  35. Sanità di Toppi, L. & R. Gabrielli, 1999. Responses to cadmium in higher plants. Environmental and Experimental Botany 41: 105–130.CrossRefGoogle Scholar
  36. Shi, G. R. & Q. S. Cai, 2008. Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica 46: 627–630.CrossRefGoogle Scholar
  37. Srivastava, S., S. Mishra, R. D. Tripathi, S. Dwivedi & D. K. Gupta, 2006. Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquatic Toxicology 80: 405–415.PubMedCrossRefGoogle Scholar
  38. Yruela, I., 2009. Copper in plants: acquisition, transport and interactions. Functional Plant Biology 36: 409–430.CrossRefGoogle Scholar
  39. Zurayk, R., B. Sukkariyah & R. Baalbaki, 2001. Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water, Air, and Soil Pollution 127: 373–388.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • David Delmail
    • 1
  • Pascal Labrousse
    • 1
  • Philippe Hourdin
    • 1
  • Laure Larcher
    • 2
  • Christian Moesch
    • 2
  • Michel Botineau
    • 1
  1. 1.Laboratory of Botany and Cryptogamy, Faculty of PharmacyUniversity of LimogesLimogesFrance
  2. 2.Pharmacology and Toxicology departmentCHU DupuytrenLimogesFrance

Personalised recommendations