, Volume 663, Issue 1, pp 109–119 | Cite as

First feeding diet of young brown trout fry in a temperate area: disentangling constraints and food selection

  • Javier Sánchez-HernándezEmail author
  • Rufino Vieira-Lanero
  • María J. Servia
  • Fernando Cobo
Primary research paper


Diet composition of newly emerged brown trout fry in natural areas remains poorly known, and foraging abilities at this early stage, although presumably reduced, are still under discussion. We have studied gut content composition of brown trout fry in a temperate area (Galicia, NW Spain) and compared it to the benthic macroinvertebrate community. Small prey such as chironomid larvae and baetid nymphs were the most important food items for newborns, some of them still presenting yolk remnants. However, the positive selection observed for Polycentropodidae and Simuliidae and the rejection of Elmidae and Leuctricidae suggest that other factors apart from size, such as locomotor abilities of fish or accessibility and antipredator behaviour of prey play an important role in feeding behaviour. Additionally, analysis of diet changes on the studied fry suggests a dramatic shift in niche breadth at the moment of complete yolk absorption, which might be related to the improvement of swimming and handling ability of fry for capturing and ingesting prey. The presence of aerial imagoes only in the stomachs of fry with no yolk provides further support to this hypothesis. Planning of restoration works on spawning grounds should then allow enough time for complete recolonization by benthic macroinvertebrates, including first instars, as searching for food in newborns is limited to the nest area due to mobility constraints.


Brown trout Fry First feeding Diet Yolk resorption Foraging abilities 



Part of this work has been carried out in the laboratories of the Station of Hydrobiology of USC “Encoro do Con” in Vilagarcía de Arousa. This work has been partially supported by the project INCITE09203072PR of the Xunta de Galicia. The authors are also grateful to two anonymous referees for their helpful comments.


  1. Aas, O., W. Haider & L. Hunt, 2000. Angler responses to potential harvest regulations in a Norwegian sport fishery: a conjoint-based choice modeling approach. North American Journal of Fisheries Management 20: 940–950.CrossRefGoogle Scholar
  2. Amundsen, P. A., H. M. Gabler & F. J. Stalduick, 1996. A new approach to graphical analysis of feeding strategy from stomach contents data modification of the Costello (1990) method. Journal of Fish Biology 48: 607–614.Google Scholar
  3. Armstrong, J. D. & K. H. Nislow, 2006. Critical habitat during the transition from maternal provisioning in freshwater fish, with emphasis on Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Journal of Zoology 269: 403–413.CrossRefGoogle Scholar
  4. Baglinière, J. L. & G. Maisse, 1991. La truite: biologie et écologie. INRA Editions, Paris.Google Scholar
  5. Butler, J. R. A., A. Radford, G. Riddington & R. Laughton, 2009. Evaluating an ecosystem service provided by Atlantic salmon, sea trout and other fish species in the River Spey, Scotland: the economic impact of recreational rod fisheries. Fisheries Research 96: 259–266.CrossRefGoogle Scholar
  6. Cobo, F., A. Mera & M. A. González, 1999. Análisis químico y valor energético de algunas familias de insectos heterometábolos dulceacuícolas. Boletín de la Asociación Española de Entomología 23: 213–221.Google Scholar
  7. Cobo, F., A. Mera & M. A. González, 2000. Análisis químico y contenido energético de algunas familias de insectos holometábolos dulceacuícolas. Nova Acta Científica Compostelana 10: 1–12.Google Scholar
  8. Crisp, D. T., 1988. Prediction from temperature of eyeing, hatching and ‘‘swim-up’’ times for salmonid embryos. Freshwater Biology 19: 41–48.CrossRefGoogle Scholar
  9. Cummins, K. W. & J. C. Wuycheck, 1971. Caloric Equivalents for Investigations in Ecological Energetics. International Association of Theoretical and Applied Limnology, Mitteilungen.Google Scholar
  10. Cunha, I. & M. Planas, 1999. Optimal prey size for early turbot larvae (Scophthalmus maximus L.) based on mouth and ingested prey size. Aquaculture 175: 103–110.CrossRefGoogle Scholar
  11. Degerman, E., I. Näslund & B. Sers, 2000. Stream habitat use and diet of juvenile (0+) brown trout and grayling in sympatry. Ecology of Freshwater Fish 9: 191–201.CrossRefGoogle Scholar
  12. Elliott, J. M., 1986. Spatial distribution and behavioural movements of migratory trout (Salmo trutta) in a Lake District stream. Journal of Animal Ecology 55: 907–922.CrossRefGoogle Scholar
  13. Elliott, J. M., 1990. Mechanisms responsible for population regulation in young migratory trout Salmo trutta L. II. The role of territorial behavior. Journal of Animal Ecology 59: 803–818.CrossRefGoogle Scholar
  14. Elliott, J. M., 1994. Quantitative Ecology and the Brown Trout. Oxford University Press, Oxford.Google Scholar
  15. Elliott, J. M. & M. A. Hurley, 1998. An individual-based model for predicting the emergence period of sea trout fry in a Lake District stream. Journal of Fish Biology 53: 414–433.CrossRefGoogle Scholar
  16. Fahy, E., 1980. Prey selection by young trout fry (Salmo trutta). Journal of Zoology 190: 27–37.CrossRefGoogle Scholar
  17. García de Leániz, C., N. Fraser & F. A. Huntingford, 2000. Variability in performance in wild Atlantic salmon, Salmo salar L., fry from a single redd. Fisheries Management and Ecology 7: 489–502.CrossRefGoogle Scholar
  18. Geurden, I., M. Aramendi, J. Zambonino-Infante & S. Panserat, 2007. Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period: effect on dietary glucose utilization in juveniles. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 292: 2275–2283.Google Scholar
  19. Greenland, D. C. & A. E. Thomas, 1972. Swimming speed of fall Chinook salmon (Oncorhynchus tshawytscha) fry. Transactions of the American Fisheries Society 101: 696–700.CrossRefGoogle Scholar
  20. Hale, M. E., 1999. Locomotor mechanics during early life history: effects of size and ontogeny on faststart performance of salmonid fishes. Journal of Experimental Biology 202: 1465–1479.PubMedGoogle Scholar
  21. Hendry, A. P., J. E. Hensleigh & R. R. Reisenbichler, 1998. Incubation temperature, developmental biology, and the divergence of sockeye salmon (Oncorhynchus nerka) within Lake Washington. Canadian Journal of Fisheries and Aquatic Sciences 55: 1387–1394.CrossRefGoogle Scholar
  22. Houde, E. D. & R. C. Schekter, 1980. Feeding by marine fish larvae: developmental and functional responses. Environmental Biology of Fishes 5: 315–334.CrossRefGoogle Scholar
  23. Hubert, W. A., D. D. Harris & H. A. Rhodes, 1993. Variation in the summer diet of age-0 brown trout in a regulated mountain stream. Hydrobiologia 259: 179–185.CrossRefGoogle Scholar
  24. Hunter, J. R., 1981. Feeding ecology and predation of marine fish larvae. In Lasker, R. (ed.), Marine Fish Larvae—Morphology, Ecology, and Relation to Fisheries. University of Washington Press, Seattle & London: 33–79.Google Scholar
  25. Ivlev, V. S., 1961. Experimental Ecology of the Feeding of Fishes (translated from the Russian by Douglas Scott). Yale University Press, New Haven.Google Scholar
  26. Jensen, A. J., B. O. Johnson & T. G. Heggberget, 1991. Initial feeding time of Atlantic salmon, Salmo salar, alevins compared to river flow and water temperature in Norwegian streams. Environmental Biology of Fishes 30: 379–385.CrossRefGoogle Scholar
  27. Kane, T. R., 1988. Relationship of temperature and time of initial feeding of Atlantic salmon. The Progressive Fish-Culturist 50: 93–97.CrossRefGoogle Scholar
  28. Keeley, E. R. & J. W. Grant, 1997. Allometry of diet selectivity in juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 54: 1894–1902.CrossRefGoogle Scholar
  29. King, A. J., 2005. Ontogenetic dietary shifts of fishes in an Australian floodplain river. Marine and Freshwater Research 56: 215–225.CrossRefGoogle Scholar
  30. McCormack, J. C., 1962. The food young trout (Salmo trutta) in two different necks. Journal of Animal Ecology 31: 305–316.CrossRefGoogle Scholar
  31. Nikcevic, M., B. Mickovic, A. Hegedis & R. K. Andjus, 1998. Feeding habits of huchen Hucho hucho (Salmonidae) fry in the River Tresnjica, Yugoslavia. The Italian Journal of Zoology 65: 231–233.CrossRefGoogle Scholar
  32. Novales-Flamarique, I. & C. W. Hawryshyn, 1996. Retinal development and visual sensitivity of young Pacific sockeye salmon (Oncorhynchus nerka). Journal of Experimental Biology 199: 869–882.Google Scholar
  33. O’Brien, W. J., 1979. The predator–prey interaction of planktivorous fish and zooplankton American. Scientist 67: 572–581.Google Scholar
  34. Ochs, G., 1969. The ecology and ethology of whirligig beetles. Archiv für Hydrobiologie 37: 375–404.Google Scholar
  35. Ogle, D. H., 2009. The effect of freezing on the length and weight measurements of ruffe (Gymnocephalus cernuus). Fisheries Research 99: 244–247.CrossRefGoogle Scholar
  36. Ojanguren, A. F. & F. Braña, 2003. Thermal dependence of embryonic growth and development in brown trout. Journal of Fish Biology 62: 580–590.CrossRefGoogle Scholar
  37. Ojanguren, A. F., F. G. Reyes-Gavilán & F. Braña, 2001. Thermal sensitivity of growth, food intake and activity of juvenile brown trout. Journal of Thermal Biology 26: 165–170.CrossRefPubMedGoogle Scholar
  38. Oscoz, J., M. C. Escala & F. Campos, 2000. La alimentación de la trucha común (Salmo trutta L., 1758) en un río de Navarra (N. España). Limnetica 18: 29–35.Google Scholar
  39. Oscoz, J., P. M. Leunda, F. Campos, M. C. Escala & R. Miranda, 2005. Diet of 0+ brown trout (Salmo trutta L., 1758) from the river Erro (Navarra, North of Spain). Limnetica 24: 319–326.Google Scholar
  40. Power, G., 1992. Seasonal growth and diet of juvenile chinook salmon (Oncorhynchus tshawytscha) in demonstration channels and the main channel of the Waitaki river, New Zealand 1982–1983. Ecology of Freshwater Fish 1: 12–25.CrossRefGoogle Scholar
  41. Raciborski, K., 1987. Energy and protein transformation in sea trout (Salmo trutta L.) larvae during transition from yolk to external food. Polskie Archiwum Hydrobiologii 34: 437–502.Google Scholar
  42. Reiriz, L., A. G. Nicieza & F. Braña, 1998. Prey selection by experienced and naive juvenile Atlantic salmon. Journal of Fish Biology 53: 100–114.CrossRefGoogle Scholar
  43. Rincón, P. A. & J. Lobón-Cerviá, 1999. Prey size selection by brown trout (Salmo trutta L.) in a stream in northern Spain. Canadian Journal of Zoology 77: 755–765.CrossRefGoogle Scholar
  44. Río-Barja, F. J. & F. Rodríguez-Lestegás, 1992. Os Ríos Galegos. Morfoloxía e Réxime. Concello da Cultura Galega, Santiago de Compostela.Google Scholar
  45. Ruginis, T., 2008. Diet and prey selectivity by age-0 brown trout (Salmo trutta L.) in different lowland streams of Lithuania. Acta Zoologica Lituanica 18: 140–146.CrossRefGoogle Scholar
  46. Schael, D. M., L. G. Rudstam & J. R. Post, 1991. Gape limitation and prey selection in larval yellow perch (Perca flavescens), freshwater drum (Aplodinotus grunniens), and black crappie (Pomoxis nigromaculatus). Canadian Journal of Fisheries and Aquatic Sciences 48: 1919–1925.CrossRefGoogle Scholar
  47. Shirota, A., 1970. Studies on the mouth size of fish larvae. Bulletin of the Japanese Society of Scientific Fisheries 36: 353–368.Google Scholar
  48. Skoglund, H. & B. T. Barlaup, 2006. Feeding pattern and diet of first feeding brown trout fry under natural conditions. Journal of Fish Biology 68: 507–521.CrossRefGoogle Scholar
  49. Thomas, A. E., J. L. Banks & D. C. Greenland, 1969. Effect of yolk sac absorption on the swimming ability of fall Chinook salmon. Transactions of the American Fisheries Society 98: 406–410.CrossRefGoogle Scholar
  50. Thorpe, J. E., M. S. Miles & D. S. Keay, 1984. Developmental rate, fecundity and egg size in Atlantic salmon, Salmo salar L. Aquaculture 43: 289–305.CrossRefGoogle Scholar
  51. Titus, R. G., 1990. Territorial behavior and its role in population regulation of young brown trout (Salmo trutta)—new perspectives. Annales Zoologici Fennici 27: 119–130.Google Scholar
  52. Tonkin, Z. D., P. Humphries & P. A. Pridmore, 2006. Ontogeny of feeding in two native and one alien fish species from the Murray-Darling Basin, Australia. Environmental Biology of Fishes 76: 303–315.CrossRefGoogle Scholar
  53. Wainwright, P. C. & B. A. Richard, 1995. Predicting patterns of prey use from morphology of fishes. Environmental Biology of Fishes 44: 97–113.CrossRefGoogle Scholar
  54. Ward, F. J. & B. R. McCulloch, 1991. Relationship between mouth gape of juvenile walleye (Stizostedion vitreum vitreum) and prey size. Verhandlungen, internationale Vereinigung fur theoretische und angewandte Limnologie 24: 2362–2364.Google Scholar
  55. Zimmerman, C. E. & H. Mosegaard, 1992. Initial feeding in migratory brown trout (Salmo trutta L.) alevins. Journal of Fish Biology 40: 647–650.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Javier Sánchez-Hernández
    • 1
    • 2
    Email author
  • Rufino Vieira-Lanero
    • 2
  • María J. Servia
    • 3
  • Fernando Cobo
    • 1
    • 2
  1. 1.Departamento de Zoología y Antropología FísicaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Estación de Hidrobiología “Encoro do Con”Vilagarcía de Arousa, PontevedraSpain
  3. 3.Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de CienciasUniversidad de A CoruñaA CoruñaSpain

Personalised recommendations