Hydrobiologia

, Volume 663, Issue 1, pp 101–108

Glacial clay affects foraging performance in a Patagonian fish and cladoceran

  • Mikael Jönsson
  • Lynn Ranåker
  • Alice Nicolle
  • Peter Ljungberg
  • Tony Fagerberg
  • Samuel Hylander
  • Therese Jephson
  • Karen Lebret
  • Jessica von Einem
  • Lars-Anders Hansson
  • P. Anders Nilsson
  • Esteban Balseiro
  • Beatriz Modenutti
Primary research paper

Abstract

Climate change is altering temperatures and precipitation patterns all over the world. In Patagonia, Argentina, predicted increase in precipitation together with rapidly melting glaciers increase the surface runoff, and thereby the transport of suspended solids to recipient lakes. Suspended solids affect the visual conditions in the water which in turn restricts visual foraging. The native fish Aplochiton zebra Jenyns, and its filter-feeding cladoceran prey, Daphnia commutata Ekman, were subjected to foraging experiments at three turbidity levels. A. zebra foraging rate was substantially reduced at naturally occurring turbidity levels and the filtering rate of D. commutata was reduced at the highest turbidity level. This indicates that Daphnia may be partly released from predation from A. zebra at the same time as it can maintain relatively high feeding rates as turbidity increases. Lower foraging rates at the same time as the metabolic demand increases, through increased temperatures, may result in larger effects on A. zebra than could be expected from increases in turbidity or temperature alone. Turbidity may, as an indirect effect of climate change, decrease planktivore foraging rates and thereby alter the interaction strength between trophic levels.

Keywords

Turbidity Glacial melting Foraging Filtering rate Visual conditions 

References

  1. Arruda, J. A., G. R. Marzolf & R. T. Faulk, 1983. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 64: 1225–1235.CrossRefGoogle Scholar
  2. Baigun, C. & R. Ferriz, 2003. Distribution patterns of native freshwater fishes in Patagonia (Argentina). Organisms Diversity & Evolution 3: 151–159.CrossRefGoogle Scholar
  3. Boehlert, G. W. & J. B. Morgan, 1985. Turbidity enhances feeding abilities of larval Pacific herring, Clupea harengus pallasi. Hydrobiologia 123: 161–170.CrossRefGoogle Scholar
  4. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. Review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  5. Bruton, M. N., 1985. The effect of suspensoids on fish. Hydrobiologia 125: 221–241.CrossRefGoogle Scholar
  6. Chapman, W. M., 1944. On the osteology and relationships of the South American fish, Aplochiton zebra Jenyns. Journal of Morphology (Philadelphia) 75: 149–165.Google Scholar
  7. Chesney, E. J., 1989. Estimating the food-requirements of striped bass larvae Morone saxatilis: effects of light, turbidity and turbulence. Marine Ecology-Progress Series 53: 191–200.CrossRefGoogle Scholar
  8. Clarke, A. & N. M. Johnston, 1999. Scaling of metabolic rate with body mass and temperature in teleost fish. Journal of Animal Ecology 68: 893–905.CrossRefGoogle Scholar
  9. Cussac, V., S. Ortubay, G. Iglesias, D. Milano, M. E. Lattuca, J. P. Barriga, M. Battini & M. Gross, 2004. The distribution of South American galaxiid fishes: the role of biological traits and post-glacial history. Journal of Biogeography 31: 103–121.CrossRefGoogle Scholar
  10. Engström-Öst, J. & J. Mattila, 2008. Foraging, growth and habitat choice in turbid water: an experimental study with fish larvae in the Baltic Sea. Marine Ecology-Progress Series 359: 275–281.CrossRefGoogle Scholar
  11. Fryxell, J. M. & P. Lundberg, 1998. Individual behavior and community dynamics. Chapman & Hall, New York.Google Scholar
  12. Gille, S. T., 2002. Warming of the Southern Ocean since the 1950s. Science 295: 1275–1277.CrossRefPubMedGoogle Scholar
  13. Granqvist, M. & J. Mattila, 2001. The effects of turbidity and light intensity on the consumption of mysids by juvenile perch (Perca fluviatilis L.). In 17th Baltic Marine Biologists Symposium. Kluwer Academic Publisher, Stockholm: 93–101.Google Scholar
  14. Gregory, R. S. & T. G. Northcote, 1993. Surface, planktonic, and benthic foraging by juvenile Chinook salmon (Oncorhynchus tshawytscha) in turbid laboratory conditions. Canadian Journal of Fisheries and Aquatic Sciences 50: 233–240.CrossRefGoogle Scholar
  15. Hansson, L. A., A. Nicolle, J. Brodersen, P. Romare, P. A. Nilsson, C. Brönmark & C. Skov, 2007. Consequences of fish predation, migration, and juvenile ontogeny on zooplankton spring dynamics. Limnology and Oceanography 52: 696–706.CrossRefGoogle Scholar
  16. IPCC, 2007. Climate Change 2007: synthesis report. In Pachauri, R. K. & A. Reisinger (eds), Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: 104.Google Scholar
  17. Jenyns, L., 1842. Fish, Part 4. In Darwin, C. (ed.), The Zoology of the Voyage of H.M.S. Beagle, under the command of Captain Fitzroy, R. N. during the years 1832 to 1836. Smith, Elder, and Co, London.Google Scholar
  18. Kirk, K. L., 1991a. Suspended clay reduces Daphnia feeding rate - Behavioral mechanisms. Freshwater Biology 25: 357–365.CrossRefGoogle Scholar
  19. Kirk, K. L., 1991b. Inorganic particles alter competition in grazing plankton—the role of selective feeding. Ecology 72: 915–923.CrossRefGoogle Scholar
  20. Kirk, K. L., 1992. Effects of suspended clay on Daphnia body growth and fitness. Freshwater Biology 28: 103–109.CrossRefGoogle Scholar
  21. Lattuca, M. E., S. Ortubay, M. A. Battini, J. P. Barriga & V. E. Cussac, 2007. Presumptive environmental effects on body shape of Aplochiton zebra (Pisces, Galaxiidae) in northern Patagonian lakes. Journal of Applied Ichthyology 23: 25–33.CrossRefGoogle Scholar
  22. Lattuca, M. E., D. Brown, L. Castineira, M. Renzi, C. Luizon, J. Urbanski & V. Cussac, 2008. Reproduction of landlocked Aplochiton zebra Jenyns (Pisces, Galaxiidae). Ecology of Freshwater Fish 17: 394–405.CrossRefGoogle Scholar
  23. Lehman, J. T. & C. D. Sandgren, 1985. Species-specific rates of growth and grazing loss among fresh-water algae. Limnology and Oceanography 30: 34–46.CrossRefGoogle Scholar
  24. Liljendahl-Nurminen, A., J. Horppila & W. Lampert, 2008. Physiological and visual refuges in a metalimnion: an experimental study of effects of clay turbidity and an oxygen minimum on fish predation. Freshwater Biology 53: 945–951.CrossRefGoogle Scholar
  25. Lima, S. L., 1998. Nonlethal effects in the ecology of predator-prey interactions: what are the ecological effects of anti-predator decision-making? Bioscience 48: 25–34.CrossRefGoogle Scholar
  26. Lind, O. T. & L. Davaloslind, 1991. Association of turbidity and organic carbon with bacterial abundance and cell size in a large, turbid, tropical lake. Limnology and Oceanography 36: 1200–1208.CrossRefGoogle Scholar
  27. McDowall, R. M., 1969. A juvenile of Aplociton Jenyns. Copeia 1969: 631–632.CrossRefGoogle Scholar
  28. McDowall, R. M. & K. Nakaya, 1987. Identity of the Galaxioid fishes of the genus Aplochiton Jenyns from Southern Chile. Japanese Journal of Ichthyology 34: 377–383.Google Scholar
  29. McDowall, R. M. & K. Nakaya, 1988. Morphological divergence in the two species of Aplochiton Jenyns (Salmoniformes: Aplochitonidae): a generalist and a specialist. Copeia 1988: 233–236.CrossRefGoogle Scholar
  30. McDowall, R. M. & N. W. Pankhurst, 2005. Loss of negative eye-size allometry in a population of Aplochiton zebra (Teleostei : Galaxiidae) from the Falkland Islands. New Zealand Journal of Zoology 32: 17–22.CrossRefGoogle Scholar
  31. Miner, J. G. & R. A. Stein, 1996. Detection of predators and habitat choice by small bluegills: Effects of turbidity and alternative prey. Transactions of the American Fisheries Society 125: 97–103.CrossRefGoogle Scholar
  32. Modenutti, B. E., E. G. Balseiro & P. M. Cervellini, 1993. Effect of the selective feeding of Galaxias maculatus (Salmoniformes, Galaxiidae) on zooplankton of a South Andes lake. Aquatic Sciences 55: 65–75.CrossRefGoogle Scholar
  33. Moore, R. D., S. W. Fleming, B. Menounos, R. Wheate, A. Fountain, K. Stahl, K. Holm & M. Jakob, 2009. Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality. Hydrological Processes 23: 42–61.Google Scholar
  34. Northcote, T. G., 1988. Fish in the structure and function of fresh-water ecosystems—a top-down view. Canadian Journal of Fisheries and Aquatic Sciences 45: 361–379.CrossRefGoogle Scholar
  35. Pascual, M. A., V. Cussac, B. Dyer, D. Soto, P. Vigliano, S. Ortubay & P. Macchi, 2007. Freshwater fishes of Patagonia in the 21st Century after a hundred years of human settlement, species introductions, and environmental change. Aquatic Ecosystem Health & Management 10: 212–227.CrossRefGoogle Scholar
  36. Piacentino, G. L. M., 1999. New geographic localities of Aplochiton species (Salmoniformes : Aplochitonidae) in the Argentinian Patagonia. Cybium 23: 209–211.Google Scholar
  37. Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.CrossRefGoogle Scholar
  38. Rignot, E., A. Rivera & G. Casassa, 2003. Contribution of the Patagonia Icefields of South America to sea level rise. Science 302: 434–437.CrossRefPubMedGoogle Scholar
  39. Steel, E. A. & S. Neuhausser, 2002. Comparison of methods for measuring visual water clarity. Journal of the North American Benthological Society 21: 326–335.CrossRefGoogle Scholar
  40. Stuart-Smith, R. D., J. F. Stuart-Smith, R. W. G. White & L. A. Barmuta, 2007. The effects of turbidity and complex habitats on the feeding of a galaxiid fish are clear and simple. Marine and Freshwater Research 58: 429–435.CrossRefGoogle Scholar
  41. Utne, A. C. W., 1997. The effect of turbidity and illumination on the reaction distance and search time of the marine planktivore Gobiusculus flavescens. Journal of Fish Biology 50: 926–938.Google Scholar
  42. Utne-Palm, A. C., 1999. Visual feeding of fish in a turbid environment: Physical and behavioural aspects. In Conference on Vision and the Behavior of Marine Animals. Taylor & Francis Ltd, Oristano: 111–128.Google Scholar
  43. Vinyard, G. L. & W. J. O’brien, 1976. Effects of light and turbidity on reactive distance of bluegill (Lepomis macrochirus). Journal of the Fisheries Research Board of Canada 33: 2845–2849.Google Scholar
  44. Young, K. A., J. Stephenson, A. Terreau, A. F. Thailly, G. Gajardo & C. G. de Leaniz, 2009. The diversity of juvenile salmonids does not affect their competitive impact on a native galaxiid. Biological Invasions 11: 1955–1961.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mikael Jönsson
    • 1
  • Lynn Ranåker
    • 1
  • Alice Nicolle
    • 1
  • Peter Ljungberg
    • 1
  • Tony Fagerberg
    • 1
  • Samuel Hylander
    • 1
  • Therese Jephson
    • 1
  • Karen Lebret
    • 1
  • Jessica von Einem
    • 1
  • Lars-Anders Hansson
    • 1
  • P. Anders Nilsson
    • 1
  • Esteban Balseiro
    • 2
  • Beatriz Modenutti
    • 2
  1. 1.Limnology, Ecology BuildingLund UniversityLundSweden
  2. 2.Laboratorio de Limnologia, INIBIOMACONICET-Universidad Nacional del ComahueBarilocheArgentina

Personalised recommendations