, Volume 663, Issue 1, pp 1–21 | Cite as

Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation

  • Erik JeppesenEmail author
  • Brian KronvangEmail author
  • Jørgen E. Olesen
  • Joachim Audet
  • Martin Søndergaard
  • Carl C. Hoffmann
  • Hans E. Andersen
  • Torben L. Lauridsen
  • Lone Liboriussen
  • Søren E. Larsen
  • Meryem Beklioglu
  • Mariana Meerhoff
  • Arda Özen
  • Korhan Özkan
Review paper


Climate change might have profound effects on the nitrogen (N) dynamics in the cultivated landscape as well as on N transport in streams and the eutrophication of lakes. N loading from land to streams is expected to increase in North European temperate lakes due to higher winter rainfall and changes in cropping patterns. Scenario (IPCC, A2) analyses using a number of models of various complexity for Danish streams and lakes suggest an increase in runoff and N transport on an annual basis (higher during winter and typically lower during summer) in streams, a slight increase in N concentrations in streams despite higher losses in riparian wetlands, higher absolute retention of N in lakes (but not as percentage of loading), but only minor changes in lake water concentrations. However, when taking into account also a predicted higher temperature there is a risk of higher frequency and abundance of potentially toxic cyanobacteria in lakes and they may stay longer during the season. Somewhat higher risk of loss of submerged macrophytes at increased N and phosphorus (P) loading and a shift to dominance of small-sized fish preying upon the key grazers on phytoplankton may also enhance the risk of lake shifts from clear to turbid in a warmer North European temperate climate. However, it must be emphasised that the prediction of N transport and thus effects is uncertain as the prediction of regional precipitation and changes in land-use is uncertain. By contrast, N loading is expected to decline in warm temperate and arid climates. However, in warm arid lakes much higher N concentrations are currently observed despite reduced external loading. This is due to increased evapotranspiration leading to higher nutrient concentrations in the remaining water, but may also reflect a low-oxygen induced reduction of nitrification. Therefore, the critical N as well as P loading for good ecological state in lakes likely has to be lower in a future warmer climate in both north temperate and Mediterranean lakes. To obtain this objective, adaptation measures are required. In both climate zones the obvious methods are to change agricultural practices for reducing the loss of nutrients to surface waters, to improve sewage treatment and to reduce the storm-water nutrient runoff. In north temperate zones adaptations may also include re-establishment of artificial and natural wetlands, introduction of riparian buffer zones and re-meandering of channelised streams, which may all have a large impact on, not least, the N loading of lakes. In the arid zone, also restrictions on human use of water are urgently needed, not least on the quantity of water used for irrigation purposes.


Climate change Nitrogen loading Lakes Ecological state Modelling Streams Subtropics Temperate Warm arid 



We are grateful to A.M. Poulsen for manuscript editing. The project was supported by the EU-WISER and EU-REFRESH projects, “CLEAR” (a Villum Kann Rasmussen Centre of Excellence Project), the BUFFALO-P project funded by the Danish Ministry of Food, Agriculture and Fisheries under the programme “Animal Husbandry, the Neighbours and the Environment”, the IMPACT project funded by the Danish Ministry of Food, Agriculture and Fisheries, The Research Council for Nature and Universe (272-08-0406), MONITECH, CRES, the BAP-METU and ÖYP- METU funds, TÜBİTAK, ÇAYDAĞ 105Y332.


  1. Abell, J. M., D. Ozkundakci & D. P. Hamilton, 2010. Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control. Ecosystems 13: 966–977.CrossRefGoogle Scholar
  2. Alcamo, J., J. M. Moreno, B. Nováky, M. Bindi, R. Corobov & R. N. J. Devoy, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. In Parry, M. L., O. F. Canziani, J. P. Palutikof, P. J. van der Linden & C. E. Hanson CE (eds), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  3. Andersen, H. E., B. Kronvang, S. E. Larsen, C. C. Hoffmann, T. S. Jensen & E. K. Rasmussen, 2006. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Science of the Total Environment 365: 223–237.PubMedCrossRefGoogle Scholar
  4. Arheimer, B., J. Andreasson, S. Fogelberg, H. Johnsson, C. B. Pers & K. Persson, 2005. Climate change impact on water quality: model results from southern Sweden. Ambio 34: 559–566.PubMedGoogle Scholar
  5. Barker, T., K. Hatton, M. O’Connor, L. Connor & B. Moss, 2008. Effects of nitrate load on submerged plant biomass and species richness: results of a mesocosm experiment. Fundamental and Applied Limnology 173: 89–100.CrossRefGoogle Scholar
  6. Bazot, S., H. Blum & C. Robin, 2008. Nitrogen rhizodeposition assessed by a (NH3)-N15 shoot pulse-labelling of Lolium perenne L. grown on soil exposed to 9 years of CO2 enrichment. Environmental and Experimental Botany 63: 410–415.CrossRefGoogle Scholar
  7. Beklioğlu, M. & A. Özen, 2008. Ülkemiz sığ gollerinde kuraklık etkisi ve ekolojik tepkiler. In Kalaycı, S. & M. E. Aydın (eds), The conference book of International Conference on Global Climate Change and Its environmental Impacts. Damla Press, Konya.Google Scholar
  8. Beklioğlu, M. & C. O. Tan, 2008. Restoration of a shallow Mediterranean lake by biomanipulation complicated by drought. Fundamental and Applied Limnology 171: 105–118.CrossRefGoogle Scholar
  9. Beklioglu, M., G. Altınayar & C. T. Tan, 2006. Water level control over submerged macrophyte development in five Mediterranean Turkey. Archiv für Hydrobiologie 166: 535–556.CrossRefGoogle Scholar
  10. Beklioğlu, M., S. Romo, I. Kagalou, X. Quintana & E. Bécares, 2007. State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584: 317–326.CrossRefGoogle Scholar
  11. Berntsen, J., J. E. Olesen, B. M. Petersen & E. M. Hansen, 2006. Long-term fate of nitrogen uptake in catch crops. European Journal of Agronomy 25: 83–390.CrossRefGoogle Scholar
  12. Blackwell, M. & E. Maltby, 1998. Identification and field testing of zones of enhanced denitrification (ZEDs) in the wetland landscape. In McComb, A. J. & J. A. Davis (eds), Wetlands for the Future—Contributions from INTECOL’S International Wetlands Conference. Gleneagles Publishing, Adelaide.Google Scholar
  13. Blanck, A. & N. Lamouroux, 2007. Large-scale intraspecific variation in life-history traits of European freshwater fish. Journal of Biogeography 34: 862–875.CrossRefGoogle Scholar
  14. Blenckner, T., R. Adrian, D. M. Livingstone, E. Jennings, C. N. Aonghusa, D. G. George, T. Jankowski, M. Järvinen, T. Nõges, D. Straile, K. Teubner & G. A. Weyhenmeyer, 2007. Large-scale climatic signatures in lakes across Europe: a meta-analysis. Global Change Biology 13: 1314–1326.CrossRefGoogle Scholar
  15. Blicher-Mathiesen, G. & C. C. Hoffmann, 1999. Denitrification as a sink for dissolved nitrous oxide in a freshwater riparian fen. Journal of Environmental Quality 28: 257–262.CrossRefGoogle Scholar
  16. Bol, R., T. Bolger, R. Cully & D. Little, 2003. Recalcitrant soil organic materials mineralize more efficiently at higher temperatures. Journal of Plant Nutrition and Soil Science 166: 300–307.CrossRefGoogle Scholar
  17. Closter, R. M., 2007. Influence of weather and expected future climate change on thermal stratification and anoxia in Danish Lakes. Biological Institute, University of Copenhagen, Copenhagen, Denmark.Google Scholar
  18. Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot & G. E. Likens, 2009. Ecology controlling eutrophication: nitrogen and phosphorus. Science 323: 1014–1015.PubMedCrossRefGoogle Scholar
  19. Davidson, T., E. R. Stepanauskas & L. Leonardson, 1997. Vertical patterns of nitrogen transformations during infiltration in two wetland soils. Applied Environmental Microbiology 63: 3648–3656.Google Scholar
  20. DHI Water & Environment, 2003. Mike 11 reference manual. DHI Water & Environment, Hørsholm, Denmark.Google Scholar
  21. Drogue, G., L. Pfister, T. Leviandier, A. El Idrissi, J. F. Iffly, P. Matgen, J. Humbert & L. Hoffmann, 2004. Simulating the spatio-temporal variability of streamflow response to climate change scenarios in a mesoscale basin. Journal of Hydrology 293: 255–269.CrossRefGoogle Scholar
  22. Eckersten, H., K. Blombäck, T. Kätterer & P. Nyman, 2001. Modelling C, N, water and heat dynamics in winter wheat under climate change in Southern Sweden. Agriculture, Ecosystems & Environment 86: 221–235.CrossRefGoogle Scholar
  23. EIE, 2007. ”Mogan ve Eymir Gölleri havzasının hidrometeorolojik özellikleri”. Technical Report. Turkish General Directorate of Electrical Power, Resources Survey and Development Administration, Ankara (in Turkish).Google Scholar
  24. Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.PubMedCrossRefGoogle Scholar
  25. European Environment Agency, 1995. In Stanners, D. & P. Bourdeau (eds), Europe’s Environment – The Dobris Assessment. European Environment Agency, Copenhagen.Google Scholar
  26. European Environment Agency, 1999. Environment in the European Union at the turn of the century. Environmental Assessment Report No. 2.Google Scholar
  27. Fleischer, S., J. Pansar & G. Gahnstrom, 1998. Origin of N2 and N2O released from the aquatic environment. Verhandlungen der Internationale Vereinigung der Limnologie 26: 1334–1336.Google Scholar
  28. Flörke, M. & J. Alcamo, 2005. European outlook on water use. Report prepared for the European Environment Agency, University of Kassel, Centre for Environmental Systems Research.Google Scholar
  29. Göçmen, G., B. B. Divrak & G. İs, 2008. A summary of a technical report on the changes in water level of ground water wells in Konya closed basin. Report-WWF-Turkey.Google Scholar
  30. González Sagrario, M. A., E. Jeppesen, J. Gomà, M. Søndergaard, J. P. Jensen, T. L. Lauridsen & F. Landkildehus, 2005. Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations? Freshwater Biology 50: 27–41.CrossRefGoogle Scholar
  31. Graham, L. P., 2004. Climate change effects on river flow to the Baltic Sea. Ambio 33: 235–241.PubMedGoogle Scholar
  32. Groffman, P. M., A. J. Gold & K. Addy, 2000. Nitrous oxide production in riparian zones and its importance to national emission inventories. Chemos Global Change Science 2: 291–299.CrossRefGoogle Scholar
  33. Gyllström, M., L. A. Hansson, E. Jeppesen, F. Garcia-Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kornijow, M. R. Miracle, M. Nykänen, T. Nõges, S. Romo, D. Stephen, E. Van Donk & B. Moss, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50: 2008–2021.CrossRefGoogle Scholar
  34. Harrison, J. A., R. J. Maranger, R. B. Alexander, A. E. Giblin, P.-A. Jacinthe, E. Mayourga, S. P. Seitzinger, D. J. Sobota & W. M. Wollheim, 2009. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 93: 143–157.CrossRefGoogle Scholar
  35. Hatfield, J. L. & R. F. Follett (eds), 2008. Nitrogen in the Environment: Sources, Problems, and Management, 2nd ed. Elsevier, Oxford.Google Scholar
  36. Haycock, N. E. & G. Pinay, 1993. Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during winter. Journal of Environmental Quality 22: 273–278.CrossRefGoogle Scholar
  37. Hefting, M. M., R. Bobbink & H. de Caluwe, 2003. Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. Journal of Environmental Quality 32: 1194–1203.PubMedCrossRefGoogle Scholar
  38. Hoffmann, C. C. & A. Baattrup-Pedersen, 2007. Re-establishing freshwater wetlands in Denmark. Ecological Engineering 30: 157–166.CrossRefGoogle Scholar
  39. Hoffmann, C. C., S. Rysgaard & P. Berg, 2000. Denitrification rates predicted by nitrogen-15 labelled nitrate microcosm studies, in situ measurements, and modeling. Journal of Environmental Quality 29: 2020–2028.CrossRefGoogle Scholar
  40. Hoffmann, C. C., P. Berg, M. Dahl, S. E. Larsen, H. E. Andersen & B. Andersen, 2006a. Groundwater flow and transport of nutrients through a riparian meadow—field data and modelling. Journal of Hydrology 31: 315–335.CrossRefGoogle Scholar
  41. Hoffmann, C. C., A. Baattrup-Pedersen, S. L. Amsinck & P. Clausen, 2006b. Overvågning af Vandmiljøplan II vådområder 2005 (Surveillance of wetlands established under the Second Action Plan on the Aquatic Environment 2005). Report: 576. National Environmental Research Institute, Denmark.Google Scholar
  42. Howden, S. M., J. F. Soussana, F. N. Tubiello, N. Chetri, M. Dunlop & H. Meinke, 2007. Adapting agriculture to climate change. Proceedings of the National Academy of Science 04: 19691–19696.CrossRefGoogle Scholar
  43. Iglesias, A., L. Garrote, F. Flores & M. Moneo, 2006. Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Research and Management 21: 775–788.CrossRefGoogle Scholar
  44. IPCC, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability, IPCC, WGII.Google Scholar
  45. James, C., J. Fisher, V. Russell, S. Collings & B. Moss, 2005. Nitrate availability and hydrophyte species richness in shallow lakes. Freshwater Biology 50: 1049–1063.CrossRefGoogle Scholar
  46. Jensen, J. P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 1692–1699.CrossRefGoogle Scholar
  47. Jeppesen, E., J. P. Jensen, J. Windolf, T. Lauridsen, M. Søndergaard, K. Sandby & P. Hald Møller, 1998. Changes in nitrogen retention in shallow eutrophic lakes following a decline in density of cyprinids. Archiv für Hydrobiologie 142: 129–152.Google Scholar
  48. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, K. Kangur, J. Köhler, S. Körner, E. Lammens, T. L. Lauridsen, M. Manca, R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willén & M. Winder, 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  49. Jeppesen, E., M. Søndergaard, M. Meerhoff, T. L. Lauridsen & J. P. Jensen, 2007a. Shallow lake restoration by nutrient loading reduction – some recent findings and challenges ahead. Hydrobiologia 584: 239–252.CrossRefGoogle Scholar
  50. Jeppesen, E., M. Meerhoff, B. A. Jakobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. Branco, 2007b. Restoration of shallow lakes by nutrient control and biomanipulation – the successful strategy depends on lake size and climate. Hydrobiologia 581: 269–288.CrossRefGoogle Scholar
  51. Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, M. Beklioğlu, A. Özen & J. E. Olesen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1930–1941.PubMedCrossRefGoogle Scholar
  52. Jeppesen, E., B. Moss, H. Bennion, L. Carvalho, L. De Meester, H. Feuchtmayr, N. Friberg, M. O. Gessner, M. Hefting, T. L. Lauridsen, L. Liboriussen, H. Malmquist, L. May, M. Meerhoff, J. S. Olafsson, M. B. Soons & J. T. A. Verhoeven, 2010a. Chapter 5: Interaction of climate change and eutrophication. In Kernan, M., R. Battarbee & B. Moss (eds), Climate Change Impacts on Freshwater Ecosystems. Wiley-Blackwell, London.Google Scholar
  53. Jeppesen, E., M. Meerhoff, K. Holmgren, I. González-Bergonzoni, F. Teixeira-de Mello, S. A. J. Declerck, L. De Meester, M. Søndergaard, T. L. Lauridsen, R. Bjerring, J. M. Conde-Porcuna, N. Mazzeo, C. Iglesias, M. Reizenstein, H. J. Malmquist, Z. W. Liu, D. Balayla & X. Lazzaro, 2010b. Impacts of climate warming on lake fish community structure and dynamics, and potential ecosystem effects. Hydrobiologia 646: 73–90.CrossRefGoogle Scholar
  54. Kaspar, T. C. & W. L. Bland, 1992. Soil temperature and root growth. Soil Science 154: 290–299.CrossRefGoogle Scholar
  55. Kaste, O., R. F. Wright, L. J. Barkved, B. Bjerkeng, T. Engen-Skaugen, J. Magnusson & N. R. Saelthun, 2006. Linked models to assess the impacts of climate change on nitrogen in a Norwegian river basin and fjord system. Science of the Total Environment 365: 200–222.PubMedCrossRefGoogle Scholar
  56. Kendon, E. J., D. P. Rowell & R. G. Jones, 2010. Mechanisms and reliability of future projected changes in daily precipitation. Climate Dynamics 35: 489–509.CrossRefGoogle Scholar
  57. Kieckbusch, J. J. & J. Schrautzer, 2007. Nitrogen removal of a re-wetted shallow-flooded peatland. Science of the Total Environment 380: 3–12.PubMedCrossRefGoogle Scholar
  58. Kimball, B. A., K. Kobayahsi & M. Bindi, 2002. Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy 77: 293–368.CrossRefGoogle Scholar
  59. Kroeze, C. & A. Mosier, 2002. Progress in source strength estimates of nitrous oxide (N2O). In Van Ham, J., A. P. M. Baede, R. Guicherit & J. G. F. M. (eds), Non-CO2 Greenhouse Gases: Scientific Understanding, Control Options and Policy Aspects. Proceedings of the 3rd International Symposium NCGG-3, Maastricht, Netherlands, January 21–23, 2002. Milpress, Rotterdam.Google Scholar
  60. Kronvang, B., C. C. Hoffmann, L. M. Svendsen, J. Windolf, J. P. Jensen & J. Dørge, 1999. Retention of nutrients in river basins. Aquatic Ecology 33: 29–40.CrossRefGoogle Scholar
  61. Kronvang, B., E. Jeppesen, D. J. Conley, M. Søndergaard, S. E. Larsen, N. B. Ovesen & J. Carstensen, 2005. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. Journal of Hydrology 304: 274–288.CrossRefGoogle Scholar
  62. Kronvang, B., H. E. Andersen, C. Borgesen, T. Dalgaard, S. E. Larsen, J. Bøgestrand & G. Blicher-Mathiesen, 2008. Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment. Environmental Science and Pollution Research 11: 144–152.Google Scholar
  63. Kruijt, B., J. P. M. Witte, C. M. J. Jacobs & T. Kroon, 2008. Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: a practical approach for the Netherlands. Journal of Hydrology 349: 257–267.CrossRefGoogle Scholar
  64. Lewis, W. M. & W. A. Wurtsbaugh, 2008. Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. International Review of Hydrobiology 93: 446–465.CrossRefGoogle Scholar
  65. Li, W., Z. Zhang & E. Jeppesen, 2008. Response of Vallisneria spinulosa (Hydrocharitaceae) to different loadings of ammonium and nitrate at moderate phosphorus concentrations: a mesocosms approach. Freshwater Biology 53: 2321–2330.CrossRefGoogle Scholar
  66. Lijklema, L., H. Jansen & R. M. M. Roijackers, 1989. Eutrophication in the Netherlands. Water Science and Technology 21: 1899–1902.Google Scholar
  67. Livingstone, D. M., 2008. A change of climate provokes a change of paradigm: taking leave of two tacit assumptions about physical lake forcing. International Review of Hydrobiology 93: 404–414.CrossRefGoogle Scholar
  68. McClain, M. E., E. W. Boyer, C. L. Dent, S. E. Gergel, N. B. Grimm, P. M. Groffman, S. C. Hart, J. W. Harvey, C. A. Johnston, E. Mayorga, W. H. McDowell & G. Pinay, 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6: 301–312.CrossRefGoogle Scholar
  69. Meerhoff, M., J. M. Clemente, F. Teixeira-de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.CrossRefGoogle Scholar
  70. Meza, F. J., D. Silva & H. Virgil, 2008. Climate change impacts on irrigated maize in Mediterranean climates: evaluation of double cropping as an emerging adaptation alternative. Agricultural Systems 98: 21–30.CrossRefGoogle Scholar
  71. Miyagi, K. M., T. Kinugasa, K. Hikosaka & T. Hirose, 2007. Elevated CO2 concentration, nitrogen use, and seed production in annual plants. Global Change Biology 13: 2161–2170.CrossRefGoogle Scholar
  72. Montreuil, O. & P. Merot, 2006. Nitrogen removal in valley bottom wetlands: assessment in headwater catchments distributed throughout a large basin. Journal of Environmental Quality 35: 2113–2122.PubMedCrossRefGoogle Scholar
  73. Mooij, W. M., S. Hulsmann, L. N. De Senerpont Domis, B. A. Nolet, P. L. E. Bodelier, P. C. M. Boers, M. D. Pires, H. J. Gons, B. W. Ibelings, R. Noordhuis, R. Portieljse, K. Wolfstein & E. H. H. R. Lammens, 2005. The impact of climate change on lakes in the Netherlands: a review. Aquatic Ecology 39: 381–400.CrossRefGoogle Scholar
  74. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–378.CrossRefGoogle Scholar
  75. Moss, B., 2001. The Broads. The people’s wetland. The New Naturalist. Harper Collins Publishers, London.Google Scholar
  76. Nõges, T., P. Nõges & R. Laugaste, 2003. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506: 257–263.CrossRefGoogle Scholar
  77. Nõges, T., I. Tõnno, R. Laugaste, E. Loigu & B. Skakalski, 2004. The impact of changes in nutrient loading on cyanobacterial dominance in Lake Peipsi (Estonia/Russia). Archiv für Hydrobiologie 160: 261–279.CrossRefGoogle Scholar
  78. Nõges, T., R. Laugaste, E. Loigu, I. Nedogarko, B. Skakalski & P. Nõges, 2005. Is the destabilisation of Lake Peipsi ecosystem caused by increased phosphorus loading or decreased nitrogen loading? Water Science and Technology 51: 267–274.PubMedGoogle Scholar
  79. Nõges, P., M. Kagu & T. Nõges, 2007. Role of climate and agricultural practice in determining matter discharge into large, shallow Lake Vortsjärv. Estonia Hydrobiologia 581: 125–134.CrossRefGoogle Scholar
  80. OECD, 1982. Eutrophication of Waters. Monitoring, Assessments and Control. OECD, Paris.Google Scholar
  81. Olesen, J. E., 2005. Climate change and CO2 effects on productivity of Danish agricultural systems. Journal of Crop Improvement 13: 257–274.CrossRefGoogle Scholar
  82. Olesen, J. E. & M. Bindi, 2002. Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy 16: 239–262.CrossRefGoogle Scholar
  83. Olesen, J. E., T. Jensen & J. Petersen, 2000. Sensitivity of field-scale winter wheat production in Denmark to climate variability and climate change. Climate Research 15: 221–238.CrossRefGoogle Scholar
  84. Olesen, J. E., G. Rubæk, T. Heidmann, S. Hansen & C. D. Børgensen, 2004. Effect of climate change on greenhouse gas emission from arable crop rotations. Nutrient Cycling in Agroecosystems 70: 147–160.CrossRefGoogle Scholar
  85. Olesen, J. E., T. R. Carter, C. H. Diaz-Ambrona, S. Fronzek, T. Heidmann, T. Hickler, T. Holt, M. I. Minguez, P. Morales, J. Palutikov, M. Quemada, M. Ruiz-Ramos, G. Rubæk, F. Sau, B. Smith & M. Sykes, 2007. Uncertainties in projected impacts of climate change on European agriculture and ecosystems based on scenarios from regional climate models. Climate Change 81: 123–143.CrossRefGoogle Scholar
  86. Özen, A., B. Karapınar, I. Kucuk, E. Jeppesen & M. Beklioglu, 2010. Drought-induced changes in nutrient retention and concentrations in Mediterranean shallow lakes, one biomanipulated and the other not. Hydrobiologia 646: 61–72.CrossRefGoogle Scholar
  87. Özkan, K., E. Jeppesen, L. S. Johansson & M. Beklioğlu, 2010. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in warm lakes: a mesocosm experiment. Freshwater Biology 54: 463–475.CrossRefGoogle Scholar
  88. Paerl, W. W, H. Xu, M. J. McCarthy, G. Zhu, B. Qin, Y. Li & W. S. Gardner, 2010. Controlling harmful cyanobacterial blooms in a hypereutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Research 16: 2358–2365.Google Scholar
  89. Paerl, H. W. & J. Huisman, 2008. Climate – blooms like it hot. Science 320: 57–58.PubMedCrossRefGoogle Scholar
  90. Patil, R., J. E. Olesen, M. Lægdsmand & J. R. Porter, 2010. Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agriculture, Ecosystems and Environment 139: 195–205.CrossRefGoogle Scholar
  91. Romo, S., M. J. Villena, M. Sahuquillo, J. M. Soria, M. Giménez, T. Alfonso, M. Giménez, T. Alfonso, E. Vicente & M. R. Miracle, 2005. Response of a shallow Mediterranean lake to nutrient diversion: does it follow similar patterns as in northern shallow lakes? Freshwater Biology 50: 1706–1717.CrossRefGoogle Scholar
  92. Rustad, L. E., J. L. Campbell, G. M. Marion, R. J. Norby, M. J. Mitchell & A. E. Hartley, 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and above-ground plant growth to experimental ecosystem warming. Oecologia 126: 543–562.CrossRefGoogle Scholar
  93. Sabater, S., A. Butturini, J.-C. Clement, T. Burt, D. Dowrick, M. Hefting, V. Maitre, G. Pinay, C. Postolache, M. Rzepecki & F. Sabater, 2003. Nitrogen removal by riparian buffers along a European climatic gradient: patterns and factors of variation. Ecosystems 6: 20–30.CrossRefGoogle Scholar
  94. Sánchez-Pérez, J. M., M. Trémolières, N. Takatert, P. Ackerer, A. Eichhorn & G. Maire, 1999. Quantification of nitrate removal by a flooded alluvial zone in the Ill floodplain (Eastern France). Hydrobiologia 410: 185–193.CrossRefGoogle Scholar
  95. Saunders, D. L. & J. Kalff, 2001. Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia 443: 205–212.CrossRefGoogle Scholar
  96. Scheffer, M., H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefPubMedGoogle Scholar
  97. Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.PubMedCrossRefGoogle Scholar
  98. Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng & S. E. M. Kasina, 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 27-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America 105: 11254–11258.PubMedCrossRefGoogle Scholar
  99. Smith, V. H., 1982. The nitrogen and phosphorus dependence of algal biomass in lakes – an empirical and theoretical-analysis. Limnology and Oceanography 27: 1101–1112.CrossRefGoogle Scholar
  100. Smith, P. & J. E. Olesen, 2010. Synergies between mitigation of, and adaptation to, climate change in agriculture. Journal of Agricultural Science 148: 543–552.CrossRefGoogle Scholar
  101. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506(509): 135–145.CrossRefGoogle Scholar
  102. Søndergaard, M., L. Liboriussen, A. R. Pedersen & E. Jeppesen, 2008. Lake restoration by fish removal: long-term effects in 36 Danish lakes. Ecosystems 11: 1291–1305.CrossRefGoogle Scholar
  103. Soussana, J. F. & A. Lüscher, 2007. Temperate grasslands and global atmospheric change: a review. Grass and Forage Science 62: 127–134.CrossRefGoogle Scholar
  104. Sowerby, A., H. Blum & A. S. Ball, 2005. Elevated atmospheric CO2 affects the turnover of nitrogen in a European grassland. Applied Soil Ecology 28: 37–46.CrossRefGoogle Scholar
  105. Thomsen, I. K. & B. T. Christensen, 1999. Nitrogen conserving potential of successive ryegrass catch crops in continuous spring barley. Soil Use and Management 15: 195–200.CrossRefGoogle Scholar
  106. Thomsen, I. K., M. Lægdsmand & J. E. Olesen, 2010. Crop growth and nitrogen turnover under increased temperatures and low autumn and winter light intensity. Agriculture, Ecosystems and Environment 139: 187–194.CrossRefGoogle Scholar
  107. Vos, J. & P. E. L. van der Putten, 1997. Field observations on nitrogen catch crops. I. Potential and actual growth and nitrogen accumulation in relation to sowing date and crop species. Plant and Soil 195: 299–309.CrossRefGoogle Scholar
  108. Vought, L. B. M., I. I. Dahl, C. L. Pedersen & J. O. La Coursiere, 1994. Nutrient retention in riparian ecotones. Ambio 23: 342–348.Google Scholar
  109. Vrede, T., A. Ballantyne, C. Mille-Lindblom, G. Algesten, Gudasz, S. Lindahl & A. K. Brungerg, 2009. Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake. Freshwater Biology 54: 331–344.CrossRefGoogle Scholar
  110. Wade, A. J., P. Durand, V. Beaujouan, W. W. Wessel, K. J. Raat, P. G. Whitehead, D. Butterfield, K. Rankinen & A. Lepisto, 2002a. A nitrogen model for European catchments: INCA, new model structure and equations. Hydrology and Earth System Sciences 6: 559–582.CrossRefGoogle Scholar
  111. Wade, A. J., P. G. Whitehead & D. Butterfield, 2002b. The Integrated Catchments model of Phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: model structure and equations. Hydrology and Earth System Sciences 6: 583–606.CrossRefGoogle Scholar
  112. Weyhenmeyer, G. A. & E. Jeppesen, 2010. Nitrate removal from natural waters gets inefficient towards warmer geographical regions. Global Change Biology.Google Scholar
  113. Weyhenmeyer, G. A., E. Jeppesen, R. Adrian, L. Arvola, T. Blenckner, T. Jankowski, E. Jennings, P. Nõges, T. Nõges & D. Straile, 2007. Nitrate-depleted conditions on the increase in shallow northern European lakes. Limnology and Oceanography 52: 1346–1453.CrossRefGoogle Scholar
  114. Whitehead, P., R. L. Wilby, D. Butterfield & A. J. Wade, 2006. Impacts of climate change on in-stream nitrogen in a lowland chalk stream: an appraisal of adaptation strategies. Science of the Total Environment 365: 260–273.PubMedCrossRefGoogle Scholar
  115. Wilhelm, S. & R. Adrian, 2008. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshwater Biology 43: 226–237.Google Scholar
  116. Windolf, J., E. Jeppesen, J. P. Jensen & P. Kristensen, 1996. Modelling the seasonal variation in in-lake concentration and retention of nitrogen in 16 shallow lakes: a four-year mass balance study. Biogeochemistry 33: 25–44.CrossRefGoogle Scholar
  117. Wright, R. F., C. Beier & B. J. Cosby, 1998. Effects of nitrogen deposition and climate change on nitrogen runoff at Norwegian boreal forest catchments: the MERLIN model applied to Risdalsheia (RAIN and CLIMEX projects). Hydrological and Earth System Sciences 2: 399–414.CrossRefGoogle Scholar
  118. Xu, H., H. W. Pearl, B. Q. Qin, G. Xhu & G. Gao, 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography 55: 420–432.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Erik Jeppesen
    • 1
    Email author
  • Brian Kronvang
    • 1
    Email author
  • Jørgen E. Olesen
    • 2
  • Joachim Audet
    • 1
  • Martin Søndergaard
    • 1
  • Carl C. Hoffmann
    • 1
  • Hans E. Andersen
    • 1
  • Torben L. Lauridsen
    • 1
  • Lone Liboriussen
    • 1
  • Søren E. Larsen
    • 1
  • Meryem Beklioglu
    • 3
  • Mariana Meerhoff
    • 1
    • 4
    • 5
  • Arda Özen
    • 3
  • Korhan Özkan
    • 1
    • 3
  1. 1.Department of Freshwater Ecology, NERIAarhus UniversitySilkeborgDenmark
  2. 2.Department of Agroecology and EnvironmentAarhus UniversityTjeleDenmark
  3. 3.Limnology Laboratory, Department of BiologyMiddle East Technical UniversityAnkaraTurkey
  4. 4.Grupo de Ecología y Rehabilitación de Sistemas Acuáticos, Departamento de Ecología, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  5. 5.Asociación Investigación y Desarrollo I+DMontevideoUruguay

Personalised recommendations