Hydrobiologia

, Volume 661, Issue 1, pp 329–349 | Cite as

A tiered framework for assessing groundwater ecosystem health

Primary research paper

Abstract

The notion of ecosystem health has been widely adopted in environmental policy, particularly in the management of river systems. Despite this, even a notional understanding of ecosystem health and its assessment in connected aquifer ecosystems remains elusive. In this article, we propose a definition and provide a tiered framework for the assessment of ecosystem health in groundwater. From the literature we identify general attributes of a healthy groundwater ecosystem and from these develop primary (Tier 1) indicators of health. Where Tier 1 benchmarks are exceeded or more detailed assessment is required, we discuss a range of indicators (Tier 2) that may together generate a multimetric index of groundwater health. Our case study using samples from an alluvial aquifer in north-western New South Wales, Australia, demonstrates the utility of both tiers of the framework, and the ability of the approach to separate disturbed and undisturbed sites. The process of multimetric development is simple and our Tier 2 benchmarks determined from limited data. Nevertheless, our framework will be applicable and readily adaptable to site-specific contexts.

Keywords

Groundwater Ecosystem health Indicators Aquifers Stygofauna Groundwater ecosystems 

References

  1. Almasri, N., 2007. Nitrate contamination of groundwater: a conceptual management framework. Environmental Impact Assessment Review 27: 220–242.CrossRefGoogle Scholar
  2. Anderson, M. E. & M. D. Sobsey, 2006. Detection and occurrence of antimicrobially resistant E. coli in groundwater on or near swine farms in eastern North Carolina. Water Science and Technology 54: 211–218.PubMedCrossRefGoogle Scholar
  3. Anneser, B., G. Pilloni, A. Bayer, T. Lueders, C. Griebler, F. Einsiedl & L. Richters, 2010. High resolution analysis of contaminated aquifer sediments and groundwater—what can be learned in terms of natural attenuation? Geomicrobiology Journal 27: 130–142.CrossRefGoogle Scholar
  4. Bailey, R. C., R. H. Norris & T. B. Reynoldson, 2004. Bioassessment of Freshwater Ecosystems: Using the Reference Condition Approach. Springer, New York.Google Scholar
  5. Battin, T., 1997. Assessment of fluorescein diacetate hydrolysis as a measure of total esterase activity in natural stream sediment biofilms. The Science of the Total Environment 198: 51–60.CrossRefGoogle Scholar
  6. Benndorf, D., G. U. Balcke, H. Harms & M. Bergen, 2007. Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. International Society for Microbial Ecology Journal 1: 224–234.Google Scholar
  7. Bonada, N., N. Prat, V. H. Resh & B. Statzner, 2006. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology 51: 495–523.PubMedCrossRefGoogle Scholar
  8. Botton, S., M. van Heusden, J. R. Parsons, H. Smidt & N. van Straalen, 2006. Resilience of microbial systems towards disturbances. Critical Reviews in Microbiology 32: 101–112.PubMedCrossRefGoogle Scholar
  9. Boulton, A. J., 1999. An overview of river health assessment: philosophies, practice, problems and prognosis. Freshwater Biology 41: 469–479.CrossRefGoogle Scholar
  10. Boulton, A. J., 2000. River ecosystem health down under: assessing ecological conditions in riverine groundwater zones in Australia. Ecosystem Health 6: 108–118.CrossRefGoogle Scholar
  11. Boulton, A. J. & P. I. Boon, 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over a new leaf? Australian Journal of Marine and Freshwater Research 42: 1–43.CrossRefGoogle Scholar
  12. Boulton, A. J., T. Datry, T. Kasahara, M. Mutz & J. Stanford, 2010. Ecology and management of the hyporheic zone: stream–groundwater interactions of running waters and their floodplains. Journal of the North American Benthological Society 29: 26–40.Google Scholar
  13. Boulton, A., G. Fenwick, P. Hancock & M. Harvey, 2008. Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebrate Systematics 22: 103–116.CrossRefGoogle Scholar
  14. Boulton, A. J. & J. Quinn, 2000. A simple and versatile technique for assessing cellulose decomposition potential in floodplains and riverine sediments. Archiv für Hydrobiologie 150: 133–151.Google Scholar
  15. Brand, F. S. & K. Jax, 2007. Focusing the meaning(s) of resilience: resilience as a descriptive concept and a boundary object. Ecology and Society 12: 23.Google Scholar
  16. Cannavo, P., A. Richaume & F. Lafolie, 2004. Fate of nitrogen and carbon in the vadose zone: in situ and laboratory measurements of seasonal variations in aerobic respiratory and denitrifying activities. Soil Biology and Biochemistry 36: 463–478.CrossRefGoogle Scholar
  17. Castellarini, F., M. J. Dole-Olivier, F. Malard & J. Gibert, 2007a. Using habitat heterogeneity to assess stygobiotic species richness in the French Jura region with a conservation perspective. Fundamental and Applied Limnology 169: 69–78.CrossRefGoogle Scholar
  18. Castellarini, F., F. Malard, M. J. Dole-Olivier & J. Gibert, 2007b. Modelling the distribution of stygobionts in the Jura Mountains (eastern France). Implications for the protection of ground waters. Diversity and Distributions 13: 213–224.CrossRefGoogle Scholar
  19. Chapelle, F., 2001. Groundwater Microbiology and Geochemistry. Wiley, New York.Google Scholar
  20. Chessman, B. & M. Royal, 2004. Bioassessment without reference sites: Use of environmental filters to predict natural assemblages of river macroinvertebrates. Journal of the North American Benthological Society 23: 599–615.CrossRefGoogle Scholar
  21. Cho, J. & S. Kim, 2000. Increases in bacteria community diversity in subsurface aquifers receiving livestock wastewater input. Applied and Environmental Microbiology 66: 956–965.PubMedCrossRefGoogle Scholar
  22. Claret, C. & A. J. Boulton, 2003. Diel variation in surface and subsurface microbial activity along a gradient of drying in an Australian sand-bed stream. Freshwater Biology 48: 1739–1755.CrossRefGoogle Scholar
  23. Claret, C., A. J. Boulton, M. J. Dole-Olivier & P. Marmonier, 2001. Functional processes versus state variables: Interstitial organic matter pathways in floodplain habitats. Canadian Journal of Fisheries and Aquatic Sciences 58: 1502–1594.CrossRefGoogle Scholar
  24. Claret, C., P. Marmonier, M. J. Dole-Olivier, M. Creuze des Chatelliers, A. J. Boulton & E. Castella, 1999. A functional classification of interstitial invertebrates: supplementing measures of biodiversity using species traits and habitat affinities. Archiv für Hydrobiologie 154: 385–403.Google Scholar
  25. Coineau, N., 2000. Adaptations to interstitial groundwater life. In Wilkens, H., D. Culver & W. Humphreys (eds), Ecosystems of the World, Vol 30: Subterranean Ecosystems. Elsevier, Amsterdam: 189–210.Google Scholar
  26. Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.PubMedCrossRefGoogle Scholar
  27. Costanza, R. & M. Mageau, 1999. What is a healthy ecosystem? Aquatic Ecology 33: 105–115.CrossRefGoogle Scholar
  28. Creuze des Chatelliers, M., J. Juget, M. Lafont & P. Martin, 2009. Subterranean aquatic Oligochaeta. Freshwater Biology 54: 678–690.CrossRefGoogle Scholar
  29. Culver, D. C., 1994. Species interactions. In Gibert, J., D. Danielopol & J. Stanford (eds), Groundwater Ecology. Academic Press, California: 271–285.Google Scholar
  30. Culver, D., W. Jones & J. Holsinger, 1992. Biological and hydrological investigation of the Cedars, Lee County, Virginia, an ecologically significant and threatened karst area. In Stanford, J. & J. Simons (eds), Proceeding of the First International Groundwater Ecology Conference. American Water Resources Association, Bethesda: 281–290.Google Scholar
  31. Dale, V. & S. Beyer, 2001. Challenges in the development and use of ecological indicators. Ecological Indicators 1: 3–10.CrossRefGoogle Scholar
  32. Danielopol, D., M. Creuze des Chatelliers, F. Mosslacher, P. Pospisil & P. Popa, 1994. Adaptions of crustacea to interstitial habitats: a practical agenda for ecological studies. In Gibert, J., D. Danielopol & J. Stanford (eds), Groundwater Ecology. Academic Press, California: 218–243.Google Scholar
  33. Danielopol, D. L., C. Griebler, A. Gunatilaka & J. Notenboom, 2003. Present state and future prospects for groundwater ecosystems. Environmental Conservation 30: 104–130.CrossRefGoogle Scholar
  34. Danielopol, D., P. Pospisil, J. Dreher, F. Mosslacher, P. Torreiter, M. Geiger-Kaiser & A. Gunatilaka, 2000. A groundwater ecosystem in the Danube wetlands at Wien (Austria). In Wilkens, H., D. Culver & W. Humphreys (eds), Ecosystems of the World, Vol 30: Subterranean Ecosystems. Elsevier, Amsterdam: 481–511.Google Scholar
  35. Datry, T., F. Malard & J. Gibert, 2005. Response of invertebrate assemblages to increased groundwater recharge in a phreatic aquifer. Journal of the North American Benthological Society 24: 461–477.Google Scholar
  36. de Lipthay, J., K. Johnsen, H. Albrechtsen, P. Rosenberg & J. Aamand, 2004. Bacterial density and community structure of a sub-surface aquifer exposed to realistic low herbicide concentrations. FEMS Microbiology Ecology 49: 59–69.PubMedCrossRefGoogle Scholar
  37. Dole-Olivier, M. J., F. Malard & J. Gibert, 2005. Main factors driving the stygobiotic assemblages at a regional scale. In Gibert, J. (ed.), World Subterranean Biodiversity. Proceedings of an International Symposium. University Claude Bernard, Lyon, France [available on internet at http://www.pascalis-project.com].
  38. Dole-Olivier, M. J., F. Malard, D. Martin, T. Lefébure & J. Gibert, 2009a. Relationships between environmental variables and groundwater biodiversity at the regional scale. Freshwater Biology 54: 797–813.CrossRefGoogle Scholar
  39. Dole-Olivier, M. J., F. Castellarini, N. Coineau, D. M. P. Galassi, P. Martin, N. Mori, A. Valdecasas & J. Gibert, 2009b. Towards and optimal sampling strategy to assess groundwater biodiversity: comparison across six European regions. Freshwater Biology 54: 777–796.CrossRefGoogle Scholar
  40. Dole-Olivier, M., P. Marmonier, M. Creuze des Chatelliers & D. Martin, 1994. Interstitial fauna associated with alluvial floodplains of the Rhone River (France). In Gibert, J., D. Danielopol & J. Stanford (eds), Groundwater Ecology. Academic Press, California: 314–345.Google Scholar
  41. Duffy, J. E., B. J. Cardinale, K. E. France, P. B. McIntyre, E. Thébault & M. Loreau, 2007. The functional role of biodiversity in food webs: incorporating trophic complexity. Ecology Letters 10: 522–538.PubMedCrossRefGoogle Scholar
  42. Eamus, D. & R. Froend, 2006. Groundwater-dependent ecosystems: the where, what and why of GDEs. Australian Journal of Botany 54: 91–96.CrossRefGoogle Scholar
  43. Eberhard, S. M., S. A. Halse & W. F. Humphreys, 2005. Stygofaunal communities of north-west Western Australia. Proceedings of the Royal Society of Western Australia 88: 167–176.Google Scholar
  44. Eberhard, S. M., S. A. Halse, M. Williams, M. Scanlon, J. Cocking & H. Barron, 2009. Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshwater Biology 54: 885–901.CrossRefGoogle Scholar
  45. Edmunds, W. M. & P. Shand, 2008. Natural Groundwater Quality. Blackwell, Oxford.CrossRefGoogle Scholar
  46. Eydal, H. S. C. & K. Pedersen, 2007. Use of an ATP assay to determine viable microbial biomass in Fennoscandian Shield groundwater from depths of 3–1000 m. Journal of Microbiological Methods 70: 363–373.PubMedCrossRefGoogle Scholar
  47. Fernandez, A. S., S. A. Hashsham, S. L. Dolhopf, L. Raskin, O. Glagoleva, F. B. Dazzo, R. F. Hickey, C. S. Criddle & J. M. Tiedje, 2000. Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Applied and Environmental Microbiology 66: 4058–4067.PubMedCrossRefGoogle Scholar
  48. Findlay, S. & W. Sobczak, 2000. Microbial communities in hyporheic sediments. In Jones, J. & P. Mulholland (eds), Streams and Ground Waters. Academic Press, California: 287–306.CrossRefGoogle Scholar
  49. Findlay, S., D. Strayer, C. Goumbala & K. Gould, 1993. Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Liminology and Oceanography 38: 1493–1499.CrossRefGoogle Scholar
  50. Fliermans, C. B., M. M. Franck, T. C. Hazen & R. W. Gorden, 1997. Ecofunctional enzymes of microbial communities in ground water. FEMS Microbiology Reviews 20: 379–389.PubMedCrossRefGoogle Scholar
  51. Franklin, R., D. Taylor & A. Mills, 2000. The distribution of microbial communities in anaerobic and aerobic zones of a shallow coastal plain aquifer. Microbial Ecology 38: 377–386.CrossRefGoogle Scholar
  52. Galassi, D., R. Huys & J. Reid, 2009a. Diversity ecology and evolution of groundwater copepods. Freshwater Biology 54: 691–708.CrossRefGoogle Scholar
  53. Galassi, D., F. Stoch, B. Fiasca, T. Di Lorenzo & E. Gattone, 2009b. Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. Freshwater Biology 54: 830–847.CrossRefGoogle Scholar
  54. Gibert, J., 2001. Basic attributes of groundwater ecosystems. In Griebler, C., D. Danielopol, J. Gibert, H. P. Nachtnebel & J. Notenboom (eds), Groundwater Ecology: A tool for management of water resources. Official Publication of the European Communities, Luxembourg: 39–52.Google Scholar
  55. Gibert, J., D. Culver, M. J. Dole-Olivier, F. Malard, M. Christman & L. Deharveng, 2009. Assessing and conserving groundwater biodiversity: synthesis and perspectives. Freshwater Biology 54: 930–941.CrossRefGoogle Scholar
  56. Gibert, J. & L. Deharveng, 2002. Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52: 473–481.CrossRefGoogle Scholar
  57. Gibert, J., F. Malard, M. Turquin & R. Lavient, 2000. Karst ecosystems in the Rhone River Basin. In Wilkens, H., D. Culver & W. Humphreys (eds), Ecosystems of the World, Vol 30: Subterranean Ecosystems. Elsevier, Amsterdam: 533–558.Google Scholar
  58. Gibert, J., J. A. Stanford, M. J. Dole-Oliver & J. Ward, 1994. Basic attributes of groundwater ecosystems and prospects for research. In Gibert, J., D. Danielopol & J. Stanford (eds), Groundwater Ecology. Academic Press, California: 7–40.Google Scholar
  59. Goldscheider, N., D. Hunkeler & P. Rossi, 2006. Review: microbial biocenoses in pristine aquifers and an assessment of investigation methods. Hydrogeology Journal 14: 926–941.CrossRefGoogle Scholar
  60. Gounot, A. M., 1994. Microbial ecology of groundwaters. In Gibert, J., D. Danielopol & J. Stanford (eds), Groundwater Ecology. Academic Press, California: 189–216.Google Scholar
  61. Griebler, C., 2001. Microbial ecology of subsurface ecosystems. In Griebler, C., D. Danielopol, J. Gibert, H. P. Nachtnebel & J. Notenboom (eds), Groundwater Ecology: A Tool for Management of Water Resources. Official Publication of the European Communities, Luxembourg: 81–108.Google Scholar
  62. Griebler, C. & T. Lueders, 2009. Microbial biodiversity in groundwater ecosystems. Freshwater Biology 54: 649–677.CrossRefGoogle Scholar
  63. Griebler, C., B. Mindl, B. Slezak & M. Geiger-Kaiser, 2002. Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers, studied with an in situ sediment exposure microcosm. Aquatic Microbial Ecology 28: 117–129.CrossRefGoogle Scholar
  64. Griebler, C. & S. I. Schmidt, 2009. Groundwater ecosystem functioning and assessment of the ecological status. SILnews 54: 16–17.Google Scholar
  65. Griebler, C., H. Stein, C. Kellermann, S. Berkhoff, H. Brielmann, S. Schmidt, D. Selesi, C. Steube, A. Fuchs & H. Hahn, 2010. Ecological assessment of groundwater ecosystems—vision or illusion? Ecological Engineering 36: 1174–1190.CrossRefGoogle Scholar
  66. Griffiths, B. S., H. L. Kuan, K. Ritz, L. A. Glover, A. E. McCaig & C. Fenwick, 2004. The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil. Microbial Ecology 47: 104–113.PubMedCrossRefGoogle Scholar
  67. Griffiths, B. S., K. Ritz, R. Wheatley, H. L. Kuan & B. Boag, 2001. An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities. Soil Biology and Biochemistry 33: 1713–1722.CrossRefGoogle Scholar
  68. Griffiths, B. S., K. Ritz, R. D. Bardgett, R. Cook & S. Christensen, 2000. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90: 279–294.CrossRefGoogle Scholar
  69. Groffman, P. A., M. A. Altabet, J. A. Böhlke, K. Butterbach-Bahl, M. B. David, M. K. Firestone, A. E. Giblin, T. M. Kana, L. A. Nielsen & M. A. Voytek, 2006. Methods for measuring denitrification: diverse approaches to a difficult problem. Ecological Applications 16: 2091–2122.PubMedCrossRefGoogle Scholar
  70. Hahn, H. J., 2006. The GW-Fauna-index: a first approach to a quantitative ecological assessment of groundwater habitats. Limnologica 36: 119–137.Google Scholar
  71. Hahn, H. J. & A. Fuchs, 2009. Distribution patterns of groundwater communities across aquifer types in south-western Germany. Freshwater Biology 54: 848–860.CrossRefGoogle Scholar
  72. Hahn, H. J. & D. Matzke, 2005. A comparison of stygofauna communities inside and outside groundwater bores. Limnologica 35: 31–44.Google Scholar
  73. Hakenkamp, C. & M. Palmer, 1992. Problems associated with quantitative sampling of groundwater invertebrates. In Stanford, J. A. & J. J. Simons (eds), Proceedings of the First International Conference on Ground Water Ecology. American Water Resources Association, Maryland: 101–110.Google Scholar
  74. Hancock, P. J. 2009. Alluvial aquifer fauna during and following drought. In International Association of Hydrogeologists. Groundwater in the Sydney Basin Symposium, Sydney, August 4–5, 2009 [available in online at http://www.dealersgroup.com.au/kb/4-hancock-p—dynamics-of-groundwater-invertebrate.pdf. Accessed 1/4/10.
  75. Hancock, P. J. & A. J. Boulton, 2008. Stygofauna biodiversity and endemism in four alluvial aquifers in eastern Australia. Invertebrate Systematics 22: 117–126.CrossRefGoogle Scholar
  76. Hancock, P. J. & A. J. Boulton, 2009. Sampling groundwater fauna: efficiency of rapid assessment methods tested in bores in eastern Australia. Freshwater Biology 54: 902–917.CrossRefGoogle Scholar
  77. Hashsham, S. A., A. S. Fernandez, S. L. Dollhopf, F. B. Dazzo & R. F. Hickey, 2000. Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose. Applied and Environmental Microbiology 66: 4050–4057.PubMedCrossRefGoogle Scholar
  78. Hendricks, S. P., 1996. Bacterial biomass activity and production within the hyporheic zone of a north-temperate stream. Archiv für Hydrobiologie 136: 467–487.Google Scholar
  79. Hering, D., C. Feld, O. Moog & T. Ofenbock, 2006. Cook book for the development of a multimetric index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566: 311–324.CrossRefGoogle Scholar
  80. Hulot, F. D., G. Lacroix, F. Lescher-Moutoue & M. Loreau, 2000. Functional diversity governs ecosystem response to nutrient enrichment. Nature 405: 340–344.PubMedCrossRefGoogle Scholar
  81. Humphreys, W., 2006. Aquifers: the ultimate groundwater dependent ecosystem. Australian Journal of Botany 54: 115–132.CrossRefGoogle Scholar
  82. Humphreys, W., 2008. Rising from down under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebrate Systematics 22: 85–101.CrossRefGoogle Scholar
  83. Humphries, J., A. Ashe, J. Smiley & C. Johnston, 2005. Microbial community structure and trichloroethylene degradation in groundwater. Canadian Journal of Microbiology 51: 433–439.PubMedCrossRefGoogle Scholar
  84. Jasinska, E. & B. Knott, 2000. Root driven faunas in cave waters. In Wilkens, H., D. Culver & W. Humphreys (eds), Ecosystems of the World, Vol 30: Subterranean Ecosystems. Elsevier, Amsterdam: 287–307.Google Scholar
  85. Jasinska, E. J., B. Knott & N. Poulter, 1993. Spread of the introduced yabby, Cherax sp (Crustacea: Decapoda), beyond the natural range of freshwater crayfishes in Western Australia. Journal of the Royal Society of Western Australia 76: 67–69.Google Scholar
  86. Jones, J. & P. Mulholland, 2000. Streams and Groundwaters. Academic Press, California.Google Scholar
  87. Karr, J. R., 1999. Defining and measuring river health. Freshwater Biology 41: 221–234.CrossRefGoogle Scholar
  88. Keating, B, J. Bauld, J. Hillier, R. Ellis, K. Weier, F. Sunners & D. Connell, 1996. Leaching of nutrients and pesticides to Queensland groundwaters. In Hunter, H., A. Eyles & Rayment, G. (eds) Downstream Effects of Landuse. Department of Natural Resources, Queensland: 151–163.Google Scholar
  89. Lafont, M., J. Camus & A. Rosso, 1996. Superficial and hyporheic oligochaete communities as indicators of pollution and water exchange in the River Moselle, France. Hydrobiologia 334: 147–155.CrossRefGoogle Scholar
  90. Lategan, M., K. Korbel & G. C. Hose, 2010. Is cotton-strip tensile strength a surrogate for microbial activity in groundwater? Marine and Freshwater Research 61: 351–356.CrossRefGoogle Scholar
  91. Lee, E.-H., J. Kim, J.-Y. Kim, S.-Y. Koo, S.-D. Lee, K.-S. Ko, D.-C. Ko, B.-W. Yum & K.-S. Cho, 2010. Comparison of microbial communities in petroleum-contaminated groundwater using genetic and metabolic profiles at Kyonggi-Do, South Korea. Environmental Earth Sciences 60: 371–382.CrossRefGoogle Scholar
  92. Madison, R. J. & J. O. Brunett, 1985. Overview of the occurrence of nitrate in ground water of the United States. In U.S. Geological Survey (ed.), National Water Summary 1984 Hydrologic Events, Selected Water-Quality Trends, and Ground-Water Resources. U.S. Geological Survey Water-Supply Paper 2275. U.S. Geological Survey, Virginia: 93–105 [available on internet at http://pubs.er.usgs.gov/usgspubs/wsp/wsp2275].
  93. Malard, F., 2001. Groundwater contamination and ecological monitoring in a mediterranean karst ecosystem in Southern France. In Griebler, C., D. Danielopol, J. Gibert, H. P. Nachtnebel & J. Notenboom (eds), Groundwater Ecology: A Tool for Management of Water Resources. Official Publication of the European Communities, Luxembourg: 183–194.Google Scholar
  94. Malard, F., J. Mathieu, J. L. Reygrobellet & M. Lafont, 1996a. Biomonitoring groundwater contamination: application to a karst area in Southern France. Aquatic Sciences 58: 158–187.CrossRefGoogle Scholar
  95. Malard, F., S. Plenet & J. Gibert, 1996b. The use of invertebrates in ground water monitoring: a rising research field. Groundwater Monitoring and Remediation 16: 103–113.CrossRefGoogle Scholar
  96. Marmonier, P. & M. Creuze des Chatelliers, 1991. Effects of spates on interstitial assemblages of the Rhone River: importance of spatial heterogeneity. Hydrobiologia 210: 243–251.CrossRefGoogle Scholar
  97. Marmonier, P., M. Creuze des Chatelliers, M. Dole-Olivier, S. Plenet & J. Gibert, 2000. Rhone groundwater systems. In Wilkens, H., D. Culver & W. Humphreys (eds), Ecosystems of the World, Vol 30: Subterranean Ecosystems. Elsevier, Amsterdam: 513–531.Google Scholar
  98. Marmonier, P., D. Fontvieille, J. Gibert & V. Vanek, 1995. Distribution of dissolved organic carbon and bacteria at the interface between the Rhone River and its alluvial aquifer. Journal of the North American Benthological Society 14: 382–392.CrossRefGoogle Scholar
  99. Mary, N. & P. Marmonier, 2000. First survey of interstitial fauna in New Caledonia Rivers: influence of geological and geomorphological characteristics. Hydrobiologia 418: 199–208.CrossRefGoogle Scholar
  100. Masciopinto, C., F. Semeraro, R. La Mantia, S. Inguscio & E. Rossi, 2006. Stygofauna abundance and distribution in the fissures and caves of the Nardo (southern Italy) fractured aquifer subject to reclaimed water injections. Geomicrobiology Journal 23: 267–278.CrossRefGoogle Scholar
  101. Mauclaire, L., J. Gibert & C. Claret, 2000. Do bacteria and nutrients control faunal assemblages in alluvial aquifers? Archiv für Hydrobiologie 148: 85–98.Google Scholar
  102. McCann, K. S., 2000. The diversity-stability debate. Nature 405: 228–233.PubMedCrossRefGoogle Scholar
  103. Mermillod-Blondin, F., M. Creuze des Chatelliers, P. Marmonier & M. J. Dole-Olivier, 2000. Distribution of solutes, microbes and invertebrates in river sediments along a riffle-pool-riffle sequence. Freshwater Biology 44: 255–269.CrossRefGoogle Scholar
  104. Moldovan, O., S. Iepure & A. Fekete, 2001. Recent ecological research on groundwater in Transylvania (Romania). In Griebler, C., D. Danielopol, J. Gibert, H. P. Nachtnebel & J. Notenboom (eds), Groundwater Ecology: A Tool for Management of Water Resources. Official Publication of the European Communities, Luxembourg: 335–343.Google Scholar
  105. Mosslacher, F., 1998. Subsurface dwelling crustacea as indicators of hydrological conditions, oxygen concentration and sediment structure in an alluvial aquifer. International Review of Hydrobiology 83: 349–364.CrossRefGoogle Scholar
  106. Mosslacher, F., C. Griebler & J. Notenboom, 2001. Biomonitoring of groundwater systems: methods, applications and possible indicators among the groundwater biota. In Griebler, C., D. Danielopol, J. Gibert, H. P. Nachtnebel & J. Notenboom (eds), Groundwater Ecology: A Tool for Management of Water Resources. Official Publication of the European Communities, Luxembourg: 173–182.Google Scholar
  107. Mulholland, P. & D. DeAngelis, 2000. Surface-subsurface exchange and nutrient spiralling. In Jones, J. & P. Mulholland (eds), Stream and Ground Waters. Academic Press, California: 149–166.CrossRefGoogle Scholar
  108. Müller, A., K. Westergaard, S. Christensen & S. Sørensen, 2002. The diversity and function of soil microbial communities exposed to different disturbances. Microbial Ecology 44: 49–58.PubMedCrossRefGoogle Scholar
  109. Neff, J. C. & G. P. Asner, 2001. Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4: 29–48.CrossRefGoogle Scholar
  110. Norris, R. H. & M. C. Thoms, 1999. What is river health? Freshwater Biology 41: 197–209.CrossRefGoogle Scholar
  111. Notenboom, J., S. Plenet & M. Turquin, 1994. Groundwater contamination and its impact on groundwater animals and ecosystems. In Gibert, J., D. Danielopol & J. Stanford (eds), Groundwater Ecology. Academic Press, California: 477–504.Google Scholar
  112. Notenboom, J., R. Serrano, I. Morell & F. Hernandez, 1995. The phreatic aquifer of the ‘Plan de Castellon’ (Spain): relationships between animal assemblages and groundwater pollution. Hydrobiologia 294: 241–249.CrossRefGoogle Scholar
  113. Novarino, G., A. Warren, L. Buttler, G. Lambourne, A. Boxshall, J. Bateman, N. E. Kinner, R. W. Harvey, R. Moss & R. Teltsch, 1997. Protozoan communities in aquifers: a review. FEMS Microbiology Review 20: 261–275.CrossRefGoogle Scholar
  114. Pannell, D. J. & M. A. Ewing, 2006. Managing secondary dryland salinity: otions and challenges. Agricultural Water Management 80: 41–56.CrossRefGoogle Scholar
  115. Paszczynski, A. J. & R. Paidisetti, 2007. Targeted proteomics approaches to monitor microbial activity in basalt aquifer. American Geophysical Union, Fall Meeting 2007. Abstract no B14A-06.Google Scholar
  116. Plenet, S. & J. Gibert, 1994. Invertebrate community responses to physical and chemical factors at the river/aquifer interaction zone: upstream form Lyon. Archiv für Hydrobiologie 132: 165–189.Google Scholar
  117. Pospisil, P., 1994. The groundwater fauna of a Danube aquifer in the ‘Lobau’ wetland in Vienna, Austria. In Gibert, J., D. Danielopol & J. Stanford (eds), Groundwater Ecology. Academic Press, California: 347–522.Google Scholar
  118. Power, J. F. & J. A. Schepers, 1989. Nitrate contamination of groundwater in North America. Agricultural Ecosystems and Environment 26: 165–187.CrossRefGoogle Scholar
  119. Preston-Mafham, J., L. Boddy & P. F. Randerson, 2002. Analysis of microbial community functional diversity using sole-carbon-source utilization profiles—a critique. FEMS Microbiology Ecology 42: 1–14.PubMedGoogle Scholar
  120. Price, M., 1996. Introducing Groundwater. Chapman and Hall, London.Google Scholar
  121. Proudlove, G. S., 2001. The conservation status of hypogean fishes. Environmental Biology of Fish 62: 239–249.CrossRefGoogle Scholar
  122. Rapport, D. J., R. Costanza & A. J. McMichael, 1998. Assessing ecosystem health. Trends in Ecology and Evolution 13: 397–402.CrossRefPubMedGoogle Scholar
  123. Röling, W. F. M., B. M. van Breukelen, M. Braster & H. W. van Verseveld, 2000. Linking microbial community structure to pollution: biolog-substrate utilization in and near a landfill leachate plume. Water Science and Technology 41: 47–53.Google Scholar
  124. Schmidt, L., A. Telfer & M. Waters, 1996. Pesticides and Nitrate in Groundwater in Relation to Landuse in the South East of South Australia. Department of Environment and Natural Resources, Adelaide, South Australia.Google Scholar
  125. Scrimgeour, G. J. & D. Wicklum, 1996. Aquatic ecosystem health and integrity: problems and potential solutions. Journal of the North American Benthological Society 15: 254–261.CrossRefGoogle Scholar
  126. Shand, P. & W. M. Edmunds, 2008. The baseline inorganic chemistry of European groundwaters. In Edmunds, W. M. & P. Shand (eds), Natural Groundwater Quality. Blackwell, Oxford: 22–58.CrossRefGoogle Scholar
  127. Shi, Y., M. Zwolinski, M. Schreiber, J. Bahr, G. Sewell & W. Hickey, 1998. Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosm experiments. Applied and Environmental Microbiology 65: 2143–2450.Google Scholar
  128. Sinclair, J., D. Kampbell, M. Cook & J. Wilson, 1993. Protozoa in subsurface sediments from sites contaminated with aviation gasoline or jet fuel. Applied and Environmental Microbiology 59: 467–472.PubMedGoogle Scholar
  129. Sinton, L. W., 1984. The macroinvertebrates in a sewage-polluted aquifer. Hydrobiologia 119: 161–169.CrossRefGoogle Scholar
  130. Sket, B., 1999. The nature of biodiversity in hypogean waters and how it is endangered. Biodiversity and Conservation 8: 1319–1338.CrossRefGoogle Scholar
  131. Stanford, J. & J. Gibert, 1994. Conclusion and perspectives. In Gibert, J., D. Danielopol & J. Stanford (eds), Groundwater Ecology. Academic Press, California: 543–550.Google Scholar
  132. Stein, H., C. Kellermann, S. I. Schmidt, H. Brielmann, C. Steube, S. E. Berkhoff, H. J. Hahn, B. Thulin & C. Griebler, 2010. The potential use of fauna and bacteria as ecological indicators for the assessment of groundwater quality. Journal of Environmental Monitoring 12: 242–254.PubMedCrossRefGoogle Scholar
  133. Steube, C., S. Richter & C. Griebler, 2009. First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeology Journal 17: 23–35.Google Scholar
  134. Stoch, F., M. Artheau, A. Brancelj, D. Galassi & F. Malard, 2009. Biodiversity indicators in European ground waters; towards a predictive model of stygobiotic species richness. Freshwater Biology 54: 745–755.CrossRefGoogle Scholar
  135. Strayer, D. L., 1994. Limits to biological distributions in groundwater. In Gibert, J., D. Danielopol & J. Stanford (eds), Groundwater Ecology. Academic Press, California: 287–311.Google Scholar
  136. Suter, G. W., 1993. A critique of ecosystem health concepts and indexes. Environmental Toxicology and Chemistry 12: 1533–1539.CrossRefGoogle Scholar
  137. Tomlinson, M. 2008. A Framework for Determining Environmental Water Requirements for Alluvial Aquifer Ecosystems. PhD thesis, University of New England, Armidale, Australia.Google Scholar
  138. Tomlinson, M., A. Boulton, P. Hancock & P. Cook, 2007. Deliberate omission or unfortunate oversight: should stygofaunal surveys be included in routine groundwater monitoring programs. Hydrogeology Journal 15: 1317–1320.CrossRefGoogle Scholar
  139. Ulanowicz, R. E., 1992. Ecosystem health and trophic flow networks. In Costanza, R., B. G. Norton & B. D. Haskell (eds), Ecosystem Health: New Goals for Environmental Management. Island Press, Washington: 190–206.Google Scholar
  140. Underwood, A. J., 1997. Experiments in Ecology and Management: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge.Google Scholar
  141. Verhoeven, J., E. Maltby & M. Schmitz, 1990. Nitrogen and phosphorous mineralisation in fens and bogs. Journal of Ecology 78: 713–726.CrossRefGoogle Scholar
  142. Vrba, J. & A. Lipponen (eds), 2007. Groundwater Resources Sustainability Indicators. IHP-VI Series in Groundwater No. 14. United Nations Educational, Scientific and Cultural Organization, Paris.Google Scholar
  143. Vugteveen, P., R. Leuven, M. Huijbregts & H. Lenders, 2006. Redefinition and elaboration of river ecosystem health: perspective for river management. Hydrobiologia 565: 289–308.CrossRefGoogle Scholar
  144. Ward, J. V., 1989. The four-dimensional nature of lotic ecosystems. Journal of North American Benthological Society 8: 2–8.CrossRefGoogle Scholar
  145. Ward, J. V., N. J. Voelz & P. Marmonier, 1992. Groundwater faunas at riverine sites receiving treated sewage effluent. In Stanford, J. A. & J. J. Simons (eds), Proceedings of the First International Conference on Ground Water Ecology. American Water Resources Association, Bethesda: 351–364.Google Scholar
  146. Washington, H. G., 1984. Diversity, biotic and similarity indices. A review with special reference to aquatic ecosystems. Water Research 18: 653–694.CrossRefGoogle Scholar
  147. Winderl, C., S. Schaefer & T. Lueders, 2007. Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environmental Microbiology 9: 1035–1046.PubMedCrossRefGoogle Scholar
  148. Wright, J. F., D. W. Sutcliffe & M. T. Furse (eds), 2000. Assessing the Biological Quality of Fresh Waters: RIVPACS and Other Techniques. Freshwater Biological Association, Ambleside.Google Scholar
  149. Zarda, B., G. Mattison, A. Hess, H. Hahn, P. Hohener & J. Zeyer, 1998. Analysis of bacterial and protozoan communities in an aquifer contaminated with monoaromatic hydrocarbons. FEMS Microbial Ecology 27: 141–152.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Environmental SciencesUniversity of Technology SydneySydneyAustralia
  2. 2.Department of Biological SciencesMacquarie UniversitySydneyAustralia
  3. 3.Department of Environment and GeographyMacquarie UniversitySydneyAustralia
  4. 4.Cotton Catchment Communities CRCNarrabriAustralia

Personalised recommendations