, Volume 661, Issue 1, pp 303–316 | Cite as

Comparative analysis of rotifer community structure in five subtropical shallow lakes in East China: role of physical and chemical conditions

  • Xin-Li Wen
  • Yi-Long XiEmail author
  • Fang-Ping Qian
  • Gen Zhang
  • Xian-Ling Xiang
Primary research paper


Worldwide, there have been few comparative studies on rotifer communities in subtropical lakes. We studied changes in rotifer community structure over 1 year and its relationship to several physicochemical variables in five subtropical shallow lakes in East China, covering a nutrient gradient from mesotrophy to moderate eutrophy. In these lakes, the genera Brachionus, Lecane, and Trichocerca dominated the rotifer species composition, and Polyarthra dolichoptera, Keratella cochlearis, Filinia longiseta, T. pusilla, and Anuraeopsis fissa were the dominant species. With increased nutrient loading, total rotifer abundance and species dominance increased, indicating that rotifer abundance might be a more sensitive indicator of trophic state than species composition. Comparative analyses of the six rotifer community indices calculated in this study and redundancy analysis (RDA) revealed that the two slightly eutrophic lakes and the other two moderately eutrophic lakes exhibited a high degree similarity in community structure. This suggests that the trophic state of a lake determines the rotifer community structure. In contrast, in the two moderately eutrophic lakes, the mass ratios of TN:TP and the contents of TP suggested N-limitation and cyanobacteria dominance in phytoplankton communities might be possible. In these lakes TN played a more important role in shaping the rotifer community according to stepwise multiple regression and RDA. RDA analysis also suggested that rotifer species distribution was strongly associated with trophic state and water temperature, with water temperature being the most important factor in determining seasonality.


Rotifers Community structure Dominant species Physicochemical conditions Shallow lakes Redundancy analysis 



We thank Dr. Yun-Zhi Yan and Dr. Mei-Ling Shao for their valuable suggestions and comments on the application of the software of CANOCO 4.5 and Dr. Terry Snell for editorial assistance in improving the English. This research was funded by Natural Science Foundation of China (30770352, 30499341), Excellent Youth Foundation in Anhui Province and university of Anhui Province (08040106904, 2009SQRZ029), the Foundation of Provincial Key Laboratory of Conservation and Utilization for Important Biological Resource in Anhui, and the Grant for Youth of Anhui Normal University (2007xqn74, 2008xqn71) and Natural Science Foundation of Educational Committee of Anhui Province (KJ2009B089Z).


  1. Alekseev, V. R. & I. I. Potina, 1986. Use of structural indices of zooplankton for estimation of planktophagous fish effect. In Lavrentyeva, G. M. (eds), Structures and Trophical Relations in the Ecosystems of the Small Fishery Lakes. Nauka, Leningrad: 68–76 (in Russian).Google Scholar
  2. Andronikova, I. N., 1993. Lake classification with respect to biological productivity. In Teoreticheskie voprosy klassifikatsii ozer [Theoretical Problems of Lake Classification]. Nauka, St. Petersburg: 51–72.Google Scholar
  3. Arora, J. & N. K. Mehra, 2003. Seasonal dynamics of rotifers in relation to physical and chemical conditions of the river Yamuna (Delhi), India. Hydrobiologia 491: 101–109.CrossRefGoogle Scholar
  4. Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 697–709.CrossRefGoogle Scholar
  5. Balvay, G. & M. Laurent, 1990. Long-term quantitative evolution of rotifers during the eutrophication in Lake Geneva. Aquatic Science 52: 162–175.CrossRefGoogle Scholar
  6. Bartsch, L. A., W. B. Richardson & M. B. Sandheinrich, 2004. Zebra mussels (Driessena polymorpha) limit food for larval fish (Pimephales promelas) in turbulent systems: a bioenergetics analysis. Hydrobiologia 495: 59–72.CrossRefGoogle Scholar
  7. Berzins, B. & B. Pejler, 1989a. Rotifer occurrence and trophic degree. Hydrobiologia 182: 171–180.CrossRefGoogle Scholar
  8. Berzins, B. & B. Pejler, 1989b. Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223–231.CrossRefGoogle Scholar
  9. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  10. Castro, B. B., S. C. Antunes, R. Pereira, A. M. V. M. Soares & F. Goncalves, 2005. Rotifer community structure in three shallow lakes: seasonal fluctuations and explanatory factors. Hydrobiologia 543: 221–232.CrossRefGoogle Scholar
  11. Contreras, J. J., S. S. S. Sarma, M. Merino-Ibarra & S. Nandini, 2009. Seasonal changes in the rotifer (Rotifera) diversity from a tropical high altitude reservoir (Valle de Bravo, Mexico). Journal of Environmental Biology 30: 191–195.PubMedGoogle Scholar
  12. Crisman, T. L., E. J. Phips & J. R. Beaver, 1995. Zooplankton seasonality and trophic state relationships in Lake Okeechobee, Florida. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 45: 213–232.Google Scholar
  13. de Ridder, M., 1981. Some considerations on the geographical distribution of rotifers. Hydrobiologia 85: 209–225.CrossRefGoogle Scholar
  14. Devetter, M., 1998. Influence of environmental factors on the rotifer assemblages in an artificial lake. Hydrobiologia 387(388): 171–178.CrossRefGoogle Scholar
  15. Downing, J. A. & E. McCauley, 1992. The nitrogen: phosphorus relationship in lakes. Limnology and Oceanography 37: 936–945.CrossRefGoogle Scholar
  16. Duggan, I. C., J. D. Green & R. J. Shiel, 2001a. Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state. Hydrobiologia 446(447): 155–164.CrossRefGoogle Scholar
  17. Duggan, I. C., J. D. Green, K. Thompson & R. J. Shiel, 2001b. The influence of macrophytes on the spatial distribution of littoral rotifers. Freshwater Biology 46: 777–786.CrossRefGoogle Scholar
  18. Duggan, I. C., J. D. Green & R. J. Shiel, 2002. Distribution of rotifer assemblages in North Island, New Zealand, lakes: relationships to environmental and historical factors. Freshwater Biology 47: 195–206.CrossRefGoogle Scholar
  19. Dumont, H. J. & H. Segers, 1996. Estimating lacustrine zooplankton species richness and complementarity. Hydrobiologia 341: 125–132.CrossRefGoogle Scholar
  20. Etilé, R. N., A. M. Kouassi, M. N. Aka & N. J. Kouassi, 2009. Spatio-temporal variations of the zooplankton abundance and composition in a West African tropical coastal lagoon (Grand-Lahou, Côte d’Ivoire). Hydrobiologia 624: 171–189.CrossRefGoogle Scholar
  21. Gannon, J. E. & R. S. Stemberger, 1978. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Transactions of the American Microscopical Society 97: 16–35.CrossRefGoogle Scholar
  22. Gilbert, J. J., 1988. Suppression of rotifer populations by Daphnia: a review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnology and Oceanography 33: 1286–1303.CrossRefGoogle Scholar
  23. Green, J., 1972. Latitudinal variation in associations of planktonic Rotifera. Journal of zoology 167: 31–39.CrossRefGoogle Scholar
  24. Green, J., 1994. The temperate-tropical gradient of planktonic Protozoa and Rotifera. Hydrobiologia 272: 13–26.CrossRefGoogle Scholar
  25. Green, J., 2003. Association of planktonic and periphytic rotifers in a tropical swamp, the Okavango Delta, Southern Africa. Hydrobiologia 490: 197–209.CrossRefGoogle Scholar
  26. Havens, K. E., R. T. James, T. L. East & V. H. Smith, 2003. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution 122: 379–390.CrossRefPubMedGoogle Scholar
  27. Havens, K. E., T. L. East & R. B. John, 2007. Zooplankton response to extreme drought in a large subtropical lake. Hydrobiologia 589: 187–198.CrossRefGoogle Scholar
  28. Henry, R., K. Hino, J. G. Tundisi & J. S. B. Riberio, 1985. Responses of phytoplankton in Lake Jacaretinga to enrichment with nitrogen and phosphorus in concentrations similar to those of the River Solimoes (Amazon, Brazil). Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 103: 453–477.Google Scholar
  29. Herzig, A., 1987. The analysis of planktonic rotifer populations: plea for long-term investigations. Hydrobiologia 14: 163–180.CrossRefGoogle Scholar
  30. Hill, M. O. & H. E. J. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.CrossRefGoogle Scholar
  31. Hillbricht-Ilkowska, A., 1983. Morphological variation of Keratella cochlearis (Gosse) in Lake Biwa, Japan. Hydrobiologia 104: 297–305.CrossRefGoogle Scholar
  32. Hofmann, W., 1977. The influence of abiotic environmental factors on population dynamics in planktonic rotifers. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 8: 77–83.Google Scholar
  33. Huang, X. F., 1999. Survey, Observation and Analysis of Lake Ecology. Chinese standard press, Beijing.Google Scholar
  34. Huang, X. F., C. Y. Hu & Z. T. Wu, 1985. Rotifers in Lake Donghu, Wuhan. Acta Hydrobiologica Sinica 9: 129–143. (in Chinese with English abstract).Google Scholar
  35. Hulbert, S. H., 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52: 577–586.CrossRefGoogle Scholar
  36. Hwang, S. J. & T. R. Heath, 1997. Bacterial productivity and protistan bacterivory in coastal and offshore communities of Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 54: 788–799.CrossRefGoogle Scholar
  37. Hwang, S. J. & T. R. Heath, 1999. Zooplankton bacterivory at coastal and offshore sites of Lake Erie. Journal of Plankton Research 21: 699–719.CrossRefGoogle Scholar
  38. James, R. T., K. Havens, G. W. Zhu & B. Q. Qin, 2009. Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, P. R. China and Lake Okeechobee, USA). Hydrobiologia 627: 211–231.CrossRefGoogle Scholar
  39. Jeppesen, E., M. Søndergaard, O. Sortkjær, E. Mortensen & P. Kristensen, 1990a. Interactions between phytoplankton, zooplankton and fish in a shallow, hypertrophic lake: a study of phytoplankton collapses in Lake Søbygård, Denmark. Hydrobiologia 191: 149–164.CrossRefGoogle Scholar
  40. Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjær & K. Olrik, 1990b. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200(201): 219–227.CrossRefGoogle Scholar
  41. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201–218.CrossRefGoogle Scholar
  42. Karabin, A., J. Ejsmont-Karabin & R. Kornatowska, 1997. Eutrophication processes in a shallow, macrophyte-dominated lake-factors influencing zooplankton structure and density in Lake Łuknajn (Poland). Hydrobiologia 342(343): 401–409.CrossRefGoogle Scholar
  43. Koste, W., 1978. Rotatoria: Die Rädertiere Mitteleuropas. Gebrüder Borntraeger, Berlin.Google Scholar
  44. Kuczyńska-Kippen, N., 2001. Seasonal changes of the rotifer community in the littoral of a polymictic lake. Verhandlungen der Internationale Vereinigüng für Limnologie 27: 2964–2967.Google Scholar
  45. Kuczyńska-Kippen, N., 2009. The spatial segregation of zooplankton communities with reference to land use and macrophytes in shallow Lake Wielkowiejskie (Poland). International Review of Hydrobiology 94: 267–281.CrossRefGoogle Scholar
  46. Kuczyńska-Kippen, N. M. & B. Nagengast, 2006. The influence of the spatial structure of hydromacrophytes and differentiating habitats on the structure of rotifer and cladoceran communities. Hydrobiologia 559: 203–212.Google Scholar
  47. Lin, Y. J., Z. L. He, Y. G. Yang, P. J. Stoffella, E. J. Phlips & C. A. Charles, 2008. Nitrogen versus phosphorus limitation of phytoplankton growth in Ten Mile Creek, Florida, USA. Hydrobiologia 605: 247–258.CrossRefGoogle Scholar
  48. Macarthur, R. & E. O. Wilson, 1967. The Theory of Island Biogeography (Foliage Height Diversity). Princeton University Press, Princeton.Google Scholar
  49. Mäemets, A., 1983. Rotifer as indicators of lake types in Estonia. Hydrobiologia 104: 357–361.CrossRefGoogle Scholar
  50. May, L. & M. O’Hare, 2005. Changes in rotifer species composition and abundance along a trophic gradient in Loch Lomond, Scotland, UK. Hydrobiologia 546: 397–404.CrossRefGoogle Scholar
  51. Pejler, B., 1977. On the global distribution of the family Brachionidae (Rotatoria). Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie Suppl. 53: 255–306.Google Scholar
  52. Phlips, E. J., M. Cichra, K. Havens, C. Hanlon, S. Badylak, B. Rueter, M. Randall & P. Hansen, 1997. Relationships between phytoplankton dynamics and the availability of light and nutrients in a shallow subtropical lake. Journal of Plankton Research 19: 319–342.CrossRefGoogle Scholar
  53. Phlips, E. J., S. Badylak & T. Grosskopf, 2002. Factors affecting the abundance of phytoplankton in a restricted subtropical lagoon, the Indian River Lagoon, Florida, USA. Estuarine, Coastal and Shelf Science 55: 385–402.CrossRefGoogle Scholar
  54. Qian, F. P., Y. L. Xi, X. L. Wen & L. Huang, 2007. The influence of eutrophication on community structure and species diversity of rotifers in five lakes. Biodiversity Science 15: 344–355. (in Chinese with English abstract).CrossRefGoogle Scholar
  55. Romare, P., S. Berg, T. Lauridsen & E. Jeppesen, 2003. Spatial and temporal distribution of fish and zooplankton in a shallow lake. Freshwater Biology 48: 1353–1362.CrossRefGoogle Scholar
  56. Rosenzweig, M. L., 1991. Habitat selection and population interactions: the search for mechanisms. American Naturalist 137: 5–28.CrossRefGoogle Scholar
  57. Sanders, R. W., K. G. Porter, S. J. Bennett & A. E. DeBiase, 1989. Seasonal pattern of bacteriovory by flagellaes, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnology and Oceanography 34: 673–687.CrossRefGoogle Scholar
  58. Segers, H., 2001. Zoogeography of the Southeast Asian Rotifera. Hydrobiologia 446(447): 233–246.CrossRefGoogle Scholar
  59. Segers, H., 2008. Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595: 49–59.CrossRefGoogle Scholar
  60. Segers, H., C. S. Nwadiaro & H. J. Dumont, 1993. Rotifera of some lakes in the floodplain of the River Niger (Imo State, Nigeria). 2. Faunal composition and diversity. Hydrobiologia 250: 63–71.Google Scholar
  61. Shao, Z. J., P. Xie & Y. Zhuge, 2001. Long-term changes of planktonic rotifers in a subtropical Chinese lake dominated by filter-feeding fishes. Freshwater Biology 46: 973–986.CrossRefGoogle Scholar
  62. Sládeček, V., 1983. Rotifers as indicators of water quality. Hydrobiologia 100: 169–201.CrossRefGoogle Scholar
  63. Smith, V. H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671.CrossRefPubMedGoogle Scholar
  64. Sommer, U., 1989. Plankton Ecology: Succession in Plankton Communities. Springer-Verlag, Berlin.Google Scholar
  65. Špoljar, M., I. Habdija, B. Primc-Habdija & L. Sipos, 2005. Impact of environmental variables and food availability on rotifer assemblage in the Karstic Barrage Lake Visovac (Krka River, Croatia). International Review of Hydrobiology 90: 555–579.CrossRefGoogle Scholar
  66. Stemberger, R. S. & J. E. Gannon, 1977. Multivariate analysis of rotifer distributions in Lake Huron. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 8: 38–42.Google Scholar
  67. Tadonléké, R. D., B. Pinel-Alloul, N. Bourbonnais & F. R. Pick, 2004. Factors affecting the bacteria-heterotrophic nanoflagellate relationship in oligo-mesotrophic lakes. Journal of Plankton Research 26: 681–695.CrossRefGoogle Scholar
  68. Telesh, I. V., 1993. The effect of fish on planktonic rotifers. Hydrobiologia 255(256): 289–296.CrossRefGoogle Scholar
  69. ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.CrossRefGoogle Scholar
  70. ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 255–289.CrossRefGoogle Scholar
  71. ter Braak, C. J. F. & P. Smilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination, Version 4.5. Microcomputer Power, Ithaca, NY.Google Scholar
  72. Vollenweider, R. A. & J. Kerekes, 1982. Eutrophication of Waters – Monitoring, Assessment and Control. Synthesis Report. OECD, Paris.Google Scholar
  73. Wallace, R. L., T. W. Snell, C. Ricci & T. Nogrady, 2006. Rotifera vol. 1: biology, ecology and systematics. In Segers, H. & H. J. Dumont (eds), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, 23, 2nd ed. Kenobi Productions, Gent, Belgium and Backhuys Academic Publishing BV., The Hague, The Netherlands.Google Scholar
  74. Wang, S. B., P. Xie & H. Geng, 2010. The relative importance of physicochemical factors and crustacean zooplankton as determinants of rotifer density and species distribution in lakes adjacent to the Yangtze River, China. Limnologica 40: 1–7.Google Scholar
  75. Wen, X. L., Y. L. Xi, L. Zhang & X. J. Lu, 2006. Analysis of community structure of Rotifera and ecological assessment of water quality in Lake Jinghu, Wuhu city. Acta Hydrobiologia Sinica 30: 152–158. (in Chinese with English abstract).Google Scholar
  76. Williamson, C. E., 1983. Invertebrate predation on planktonic rotifers. Hydrobiologia 104: 385–396.CrossRefGoogle Scholar
  77. Williamson, C. E. & N. M. Butler, 1986. Predation on rotifers by the suspension-feeding calanoid copepod Diaptomus pallidus. Limnology and Oceanography 31: 393–402.CrossRefGoogle Scholar
  78. Xi, Y. L., H. J. Jin, P. Xie & X. F. Huang, 2002. Morphological variation of Keratella cochlearis (Rotatoria) in a shallow, eutrophic subtropic Chinese lake. Journal of Freshwater Ecology 17: 447–454.Google Scholar
  79. Yang, G. J., H. K. Pan, Z. W. Liu, W. M. Wang & B. Q. Qin, 2007. Comparative study on seasonal variations in rotifers of the waters with different trophic states in Lake Taihu. Journal of Lake Sciences 19: 652–657. (in Chinese with English abstract).Google Scholar
  80. Yang, G. J., C. N. Zhong & H. K. Pan, 2009. Comparative studies on seasonal variations of metazooplankton in waters with different eutrophic states in Lake Taihu. Environmental Monitoring Assessment 150: 445–453.CrossRefGoogle Scholar
  81. Yoshida, T., J. Urabe & J. J. Elser, 2003. Assessment of “top-down” and “bottom-up” forces as determinants of rotifer distribution among lakes in Ontario, Canada. Ecological Research 18: 639–650.CrossRefGoogle Scholar
  82. Zhou, S. C., X. F. Huang & Q. H. Cai, 2009. Temporal and spatial distributions of rotifers in Xiangxi Bay of the Three Gorges reservoir, China. International Review of Hydrobiology 94: 542–559.CrossRefGoogle Scholar
  83. Zhuge, Y. & X. F. Huang, 1993. Species composition of Rotifera with reference to some taxonomic aspects in Lake Donghu, Wuhan. Acta Hydrobiologica Sinica 17: 347–356. (in Chinese with English abstract).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Xin-Li Wen
    • 1
  • Yi-Long Xi
    • 1
    Email author
  • Fang-Ping Qian
    • 1
  • Gen Zhang
    • 1
  • Xian-Ling Xiang
    • 1
  1. 1.Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life SciencesAnhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations