Advertisement

Hydrobiologia

, Volume 662, Issue 1, pp 11–18 | Cite as

Rotifers: excellent subjects for the study of macro- and microevolutionary change

  • Gregor F. FussmannEmail author
ROTIFERA XII

Abstract

Rotifers, both as individuals and as a phylogenetic group, are particularly worthwhile subjects for the study of evolution. Over the past decade molecular and experimental work on rotifers has facilitated major progress in three lines of evolutionary research. First, we continue to reveal the phylogentic relationships within the taxon Rotifera and its placement within the tree of life. Second, we have gained a better understanding of how macroevolutionary transitions occur and how evolutionary strategies can be maintained over millions of years. In the case of rotifers, we are challenged to explain the evolution of obligate asexuality (in the bdelloids) as mode of reproduction and how speciation occurs in the absence of sex. Recent research with bdelloid rotifers has identified novel mechanisms such as horizontal gene transfer and resistance to radiation as factors potentially affecting macroevolutionary change. Third, we are finding that microevolutionary change can be sufficiently rapid to interact with ecological dynamics. Rotifers can be easily cultured, reproduce quickly, and occur at high levels of clonal, genetic diversity in nature. These features make them excellent eukaryotic model systems for the study of eco-evolutionary dynamics.

Keywords

Rotifer phylogeny Asexuality Eco-evolutionary dynamics 

Notes

Acknowledgment

I acknowledge support through an NSERC Discovery Grant.

References

  1. Ahlrichs, W. H., 1995, Zur Ultrastruktur und Phylogenie von Seison nebaliae Grube, 1859, und Seison annulatus Claus, 1876—Hypothesen zu phylogenetischen Verwandtschaftsverhältnissen innerhalb der Bilateria. Cuvillier, Göttingen: 310 pp.Google Scholar
  2. Arkhipova, I. & M. Meselson, 2000. Transposable elements in sexual and ancient asexual taxa. Proceedings of the National Academy of Sciences of the United States of America 97: 14473–14477.CrossRefPubMedGoogle Scholar
  3. Arkhipova, I. & M. Meselson, 2005. Deleterious transposable elements and the extinction of asexuals. Bioessays 27: 76–85.CrossRefPubMedGoogle Scholar
  4. Barraclough, T. G., C. W. Birky & A. Burt, 2003. Diversification in sexual and asexual organisms. Evolution 57: 2166–2172.PubMedGoogle Scholar
  5. Barraclough, T. G., D. Fontaneto, C. Ricci & E. A. Herniou, 2007. Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Molecular Biology and Evolution 24: 1952–1962.CrossRefPubMedGoogle Scholar
  6. Becks, L., S. P. Ellner, L. E. Jones & N. G. Hairston, 2010. Reduction of adaptive genetic diversity radically alters eco-evolutionary community dynamics. Ecology Letters 13: 989–997.PubMedGoogle Scholar
  7. Bell, G., 1982. The Masterpiece of Nature. University of California Press, Berkeley.Google Scholar
  8. Bennett, W. N. & M. E. Boraas, 1989. A demographic profile of the fastest growing metazoan: a strain of Brachionus calyciflorus (Rotifera). Oikos 55: 365–369.CrossRefGoogle Scholar
  9. Birky, C. W., 2004. Bdelloid rotifers revisited. Proceedings of the National Academy of Sciences of the United States of America 101: 2651–2652.CrossRefPubMedGoogle Scholar
  10. Carmona, M. J., N. Dimas-Flores, E. M. Garcia-Roger & M. Serra, 2009. Selection of low investment in sex in a cyclically parthenogenetic rotifer. Journal of Evolutionary Biology 22: 1975–1983.CrossRefPubMedGoogle Scholar
  11. Derry, A. M., P. D. N. Hebert & E. E. Prepas, 2003. Evolution of rotifers in saline and subsaline lakes: a molecular phylogenetic approach. Limnology and Oceanography 48: 675–685.CrossRefGoogle Scholar
  12. Fontaneto, D., E. A. Herniou, C. Boschetti, M. Caprioli, G. Melone, C. Ricci & T. G. Barraclough, 2007. Independently evolving species in asexual bdelloid rotifers. PLoS Biology 5: 914–921.CrossRefGoogle Scholar
  13. Fontaneto, D., C. Boschetti & C. Ricci, 2008. Cryptic diversification in ancient asexuals: evidence from the bdelloid rotifer Philodina flaviceps. Journal of Evolutionary Biology 21: 580–587.CrossRefPubMedGoogle Scholar
  14. Fontaneto, D., N. Iakovenko, I. Eyres, M. Kaya, M. Wyman & T. G. Barraclough, 2011. Cryptic diversity in the genus Adineta Hudson & Gosse, 1886 (Rotifera: Bdelloidea: Adinetidae): a DNA taxonomy approach. Hydrobiologia. doi: 10.1007/s10750-010-0481-7.
  15. Funch, P., M. V. Sørensen & M. Obst, 2005. On the phylogenetic position of Rotifera—have we come any further? Hydrobiologia 546: 11–28.CrossRefGoogle Scholar
  16. Fussmann, G. F., S. P. Ellner & N. G. Hairston, 2003. Evolution as a critical component of plankton dynamics. Proceedings of the Royal Society of London Series B-Biological Sciences 270: 1015–1022.CrossRefGoogle Scholar
  17. Fussmann, G. F., M. Loreau & P. A. Abrams, 2007. Eco-evolutionary dynamics of communities and ecosystems. Functional Ecology 21: 465–477.CrossRefGoogle Scholar
  18. Garcia-Varela, M. & S. A. Nadler, 2006. Phylogenetic relationships among Syndermata inferred from nuclear and mitochondrial gene sequences. Molecular Phylogenetics and Evolution 40: 61–72.CrossRefPubMedGoogle Scholar
  19. Garey, J. R., T. J. Near, M. R. Nonnemacher & S. A. Nadler, 1996. Molecular evidence for Acanthocephala as a subtaxon of Rotifera. Journal of Molecular Evolution 43: 287–292.CrossRefPubMedGoogle Scholar
  20. Garey, J. R., A. Schmidt-Rhaesa, T. J. Near & S. A. Nadler, 1998. The evolutionary relationships of rotifers and acanthocephalans. Hydrobiologia 388: 83–91.CrossRefGoogle Scholar
  21. Gladyshev, E. & M. Meselson, 2008. Extreme resistance of bdelloid rotifers to ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America 105: 5139–5144.CrossRefPubMedGoogle Scholar
  22. Gladyshev, E. A., M. Meselson & I. R. Arkhipova, 2007. A deep-branching clade of retrovirus-like retrotransposons in bdelloid rotifers. Gene 390: 136–145.CrossRefPubMedGoogle Scholar
  23. Gladyshev, E. A., M. Meselson & I. R. Arkhipova, 2008. Massive horizontal gene transfer in bdelloid rotifers. Science 320: 1210–1213.CrossRefPubMedGoogle Scholar
  24. Gomez, A., 2005. Molecular ecology of rotifers: from population differentiation to speciation. Hydrobiologia 546: 83–99.CrossRefGoogle Scholar
  25. Gomez, A. & T. W. Snell, 1996. Sibling species and cryptic speciation in the Brachionus plicatilis species complex (Rotifera). Journal of Evolutionary Biology 9: 953–964.CrossRefGoogle Scholar
  26. Gomez, A., M. Serra, G. R. Carvalho & D. H. Lunt, 2002. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56: 1431–1444.PubMedGoogle Scholar
  27. Herlyn, H., O. Piskurek, J. Schmitz, U. Ehlers & H. Zischler, 2003. The syndermatan phylogeny and the evolution of acanthocephalan endoparasitism as inferred from 18S rDNA sequences. Molecular Phylogenetics and Evolution 26: 155–164.CrossRefPubMedGoogle Scholar
  28. Hur, J. H., K. Van Doninck, M. L. Mandigo & M. Meselson, 2009. Degenerate tetraploidy was established before bdelloid rotifer families diverged. Molecular Biology and Evolution 26: 375–383.CrossRefPubMedGoogle Scholar
  29. Jones, L. E. & S. P. Ellner, 2007. Effects of rapid prey evolution on predator-prey cycles. Journal of Mathematical Biology 55: 541–573.CrossRefPubMedGoogle Scholar
  30. Jones, L. E., L. Becks, S. P. Ellner, N. G. Hairston, T. Yoshida & G. F. Fussmann, 2009. Rapid contemporary evolution and clonal food web dynamics. Philosophical Transactions of the Royal Society B-Biological Sciences 364: 1579–1591.CrossRefGoogle Scholar
  31. Kubanek, J., T. W. Snell & C. Pirkle, 2007. Chemical defense of the red tide dinoflagellate Karenia brevis against rotifer grazing. Limnology and Oceanography 52: 1026–1035.CrossRefGoogle Scholar
  32. Mark Welch, D. B., 2000. Evidence from a protein-coding gene that acanthocephalans are rotifers. Invertebrate Biology 119: 17–26.CrossRefGoogle Scholar
  33. Mark Welch, D. B. & M. Meselson, 2000. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1215.CrossRefPubMedGoogle Scholar
  34. Mark Welch, D. B. & M. S. Meselson, 2001. Rates of nucleotide substitution in sexual and anciently asexual rotifers. Proceedings of the National Academy of Sciences of the United States of America 98: 6720–6724.CrossRefPubMedGoogle Scholar
  35. Mark Welch, D. B., M. P. Cummings, D. M. Hillis & M. Meselson, 2004a. Divergent gene copies in the asexual class Bdelloidea (Rotifera) separated before the bdelloid radiation or within bdelloid families. Proceedings of the National Academy of Sciences of the United States of America 101: 1622–1625.CrossRefPubMedGoogle Scholar
  36. Mark Welch, J. L., D. B. Mark Welch & M. Meselson, 2004b. Cytogenetic evidence for asexual evolution of bdelloid rotifers. Proceedings of the National Academy of Sciences of the United States of America 101: 1618–1621.CrossRefPubMedGoogle Scholar
  37. Mark Welch, D. B., J. L. Mark Welch & M. Meselson, 2008. Evidence for degenerate tetraploidy in bdelloid rotifers. Proceedings of the National Academy of Sciences of the United States of America 105: 5145–5149.CrossRefPubMedGoogle Scholar
  38. Maynard Smith, J., 1986. Contemplating life without sex. Nature 324: 300–301.CrossRefGoogle Scholar
  39. Melone, G., C. Ricci, H. Segers & R. L. Wallace, 1998. Phylogenetic relationships of phylum Rotifera with emphasis on the families of Bdelloidea. Hydrobiologia 388: 101–107.CrossRefGoogle Scholar
  40. Morran, L. T., M. D. Parmenter & P. C. Phillips, 2009. Mutation load and rapid adaptation favour outcrossing over self-fertilization. Nature 462: 350–352.CrossRefPubMedGoogle Scholar
  41. Poinar, G. O. & C. Ricci, 1992. Bdelloid rotifers in Dominican amber: evidence for parthenogenetic continuity. Experientia 48: 408–410.CrossRefGoogle Scholar
  42. Pouchkina-Stantcheva, N. N., B. M. McGee, C. Boschetti, D. Tolleter, S. Chakrabortee, A. V. Popova, F. Meersman, D. Macherel, D. K. Hincha & A. Tunnacliffe, 2007. Functional divergence of former alleles in an ancient asexual invertebrate. Science 318: 268–271.CrossRefPubMedGoogle Scholar
  43. Schurko, A. M., M. Neiman & J. M. Logsdon, 2009. Signs of sex: what we know and how we know it. Trends in Ecology & Evolution 24: 208–217.CrossRefGoogle Scholar
  44. Sørensen, M. V. & G. Giribet, 2006. A modern approach to rotiferan phylogeny: combining morphological and molecular data. Molecular Phylogenetics and Evolution 40: 585–608.CrossRefPubMedGoogle Scholar
  45. Swanstrom, J., K. Chen, K. Castillo, T. G. Barraclough & D. Fontaneto, 2011. Testing for evidence of inefficient selection in bdelloid rotifers: do sample size and habitat differences matter? Hydrobiologia. doi: 10.1007/s10750-010-0480-8.
  46. Thompson, J. N., 1998. Rapid evolution as an ecological process. Trends in Ecology & Evolution 13: 329–332.CrossRefGoogle Scholar
  47. Waggoner, B. M. & G. O. Poinar, 1993. Fossil habdotrochid rotifers in Dominican amber. Experientia 49: 354–357.CrossRefGoogle Scholar
  48. Wallace, R. L., T. W. Snell, C. Ricci & T. Nogrady, 2006. Rotifera. Part 1: Biology, Ecology and Systematics. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Backhuys Publishers, Ghent, The Netherlands.Google Scholar
  49. Wilson, C. G. & P. W. Sherman, 2010. Anciently asexual bdelloid rotifers escape lethal fungal parasites by drying up and blowing away. Science 327: 574–576.CrossRefPubMedGoogle Scholar
  50. Witek, A., H. Herlyn, I. Ebersberger, D. B. Mark Welch & T. Hankeln, 2009. Support for the monophyletic origin of Gnathifera from phylogenomics. Molecular Phylogenetics and Evolution 53: 1037–1041.Google Scholar
  51. Witek, A., H. Herlyn, A. Meyer, L. Boell, G. Bucher & T. Hankeln, 2008. EST based phylogenomics of Syndermata questions monophyly of Eurotatoria. BMC Evolutionary Biology 8: 345.CrossRefPubMedGoogle Scholar
  52. Yoshida, T., L. E. Jones, S. P. Ellner, G. F. Fussmann & N. G. Hairston, 2003. Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424: 303–306.CrossRefPubMedGoogle Scholar
  53. Yoshida, T., N. G. Hairston & S. P. Ellner, 2004. Evolutionary trade-off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris. Proceedings of the Royal Society of London Series B-Biological Sciences 271: 1947–1953.CrossRefGoogle Scholar
  54. Yoshida, T., S. P. Ellner, L. E. Jones, B. J. M. Bohannan, R. E. Lenski & N. G. Hairston, 2007. Cryptic population dynamics: rapid evolution masks trophic interactions. PLoS Biology 5: 1868–1879.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of BiologyMcGill UniversityMontrealCanada

Personalised recommendations