Advertisement

Hydrobiologia

, Volume 661, Issue 1, pp 133–143 | Cite as

Molecular and microscopic diversity of planktonic eukaryotes in the oligotrophic Lake Stechlin (Germany)

  • W. LuoEmail author
  • C. Bock
  • H. R. Li
  • J. Padisák
  • L. Krienitz
Primary research paper

Abstract

The aim of this study was to compare a molecular and a microscopic approach to study the planktonic eukaryotic diversity of an oligotrophic lake. Plankton samples from the temperate Lake Stechlin were assessed in winter and summer 2008 by comparison of 18S rRNA gene clone libraries to light microscopic evaluations. For both approaches identical samples were used. There were remarkable differences between the main groups recovered by the contrasting methods. The microscopic analyses showed predominance of autotrophic planktonic organisms, whereas most of them could not be discovered by the molecular method which resulted in a higher diversity of heterotrophic flagellates. The microscopic survey revealed high diversity of Chlorophyta and Cryptophyta as well as the Stramenopiles groups of Bacillariophyceae and Chrysophyceae. The clone libraries, based on full-length 18S rRNA gene sequences, displayed highest diversity of Alveolata belonging to seven different subclades. Notably, Antarctic Dinophyta-related clones were detected. The occurrence of the marine phagotrophic flagellate Telonema was also documented. Comparing the two sampling seasons, rich diversity suggests that flagellates played an important role in late winter (February), however, there is relatively low diversity in summer (August). The newly discovered molecular diversity of planktonic eukaryotes in Stechlin will help to understand the biodiversity patterns in freshwater lakes.

Keywords

Microbial eukaryotes Microscopy Molecular biodiversity Lake Stechlin 

Notes

Acknowledgments

This research is supported by National Natural Science Foundation of China (No. 40806073). We also thank Y.Y. Lou and L.M. Huang for technical assistance.

Supplementary material

10750_2010_510_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 24 kb)

References

  1. Adl, S. M., A. G. B. Simpson, M. A. Farmer, R. A. Andersen, O. R. Anderson & J. R. Barta, 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology 52: 399–451.CrossRefPubMedGoogle Scholar
  2. Bock, C., T. Pröschold & L. Krienitz, 2010. Two new Dictyosphaerium-morphotype lineages of the Chlorellaceae (Trebouxiophyceae): Heynigia gen nov. and Hindakia gen. nov. European Journal of Phycology 45: 267–277.CrossRefGoogle Scholar
  3. Casper, S. J., 1985a. Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publ., Dordrecht, Boston, Lancaster: 553 pp.Google Scholar
  4. Casper, S. J., 1985b. The phytoplankton. In Casper, S. J. (ed.), Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publ., Dordrecht, Boston, Lancaster: 157–195.Google Scholar
  5. Cavalier-Smith, T. & E. E. Chao, 2003. Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution. Journal of Molecular Evolution 56: 540–563.CrossRefPubMedGoogle Scholar
  6. Chao, A., 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43: 783–791.CrossRefPubMedGoogle Scholar
  7. Díez, B., C. Pedrós-Alió & R. Masanna, 2001. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Applied and Environmental Microbiology 67: 2932–2941.CrossRefPubMedGoogle Scholar
  8. Ettl, H., 1983. Chlorophyta I, Phytomonadina. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa. Fischer Verlag, Jena: 807 pp.Google Scholar
  9. Gast, R. J., D. M. Moran, D. J. Beaudoin, J. N. Blythe, M. R. Dennett & D. A. Caron, 2006. Abundance of a novel dinoflagellate phylotype in the Ross Sea, Antarctica. Journal of Phycology 42: 233–242.CrossRefGoogle Scholar
  10. Gervais, F., J. Padisák & R. Koschel, 1997. Do light quality and low phosphorus concentration favour picocyanobacteria below the thermocline of the oligotrophic Lake Stechlin? Journal of Plankton Research 19: 771–781.CrossRefGoogle Scholar
  11. Hansen, L. R., J. Kristiansen & J. V. Rasmussen, 1994. Potential toxicity of the freshwater Chrysochromulina species C. parva (Prymnesiophyceae). Hydrobiologia 287: 157–159.Google Scholar
  12. Hegewald, E., J. Padisák & T. Friedl, 2007. Pseudotetraedriella kamillae: taxonomy and ecology of a new member of the algal class Eustigmatophyceae (Stramenopiles). Hydrobiologia 586: 107–116.CrossRefGoogle Scholar
  13. Hepperle, D. & L. Krienitz, 2001. Systematics and ecology of chlorophyte picoplankton in German inland waters along a nutrient gradient. International Review of Hydrobiology 86: 269–284.CrossRefGoogle Scholar
  14. Hoef-Emden, K., 2007. Revision of the genus Cryptomonas (Cryptophyceae) II: incongruences between the classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. Phycologia 46: 402–428.CrossRefGoogle Scholar
  15. Hoef-Emden, K. & M. Melkonian, 2003. Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist 154: 371–409.CrossRefPubMedGoogle Scholar
  16. Hughes, J. B., J. J. Hellmann, T. H. Ricketts & B. J. M. Bohannan, 2001. Counting the uncountable: statistical approaches to estimating microbial diversity. Applied and Environmental Microbiology 67: 4399–4406.CrossRefPubMedGoogle Scholar
  17. Huss, V. A. R., C. Frank, E. C. Hartmann, M. Hirmer, A. Kloboucek, B. M. Seidel, P. Wenzeler & E. Kessler, 1999. Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). Journal of Phycology 35: 587–598.CrossRefGoogle Scholar
  18. Kaczmarska, I., M. Beaton, A. C. Benoit & L. K. Medlin, 2005. Molecular phylogeny of selected members of the order Thalassiosirales (Bacillariophyta) and evolution of the fultoportula. Journal of Phycology 42: 121–138.CrossRefGoogle Scholar
  19. Kagami, M., A. de Bruin, B. W. Ibelings & E. Van Donk, 2007. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578: 113–129.CrossRefGoogle Scholar
  20. Klaveness, D., K. Shalchian-Tabrizi, H. A. Thomsen, W. Eikrem & K. S. Jakobsen, 2005. Telonema antarcticum sp nov., a common marine phagotrophic flagellate. International Journal of Systematic and Evolutionary Microbiology 55: 2595–2604.CrossRefPubMedGoogle Scholar
  21. Koschel, R., 1976. Der Einfluss des Phosphorangebotes auf die Primärproduktion des Phytoplanktons in einem geschichteten Klarwassersee (Stechlinsee, DDR). Limnologica 10: 325–346.Google Scholar
  22. Krienitz, L. & W. Scheffler, 1994. The Selenastraceae of the oligotrophic Lake Stechlin (Brandenburg, Germany). Biologia 49: 463–471.Google Scholar
  23. Krienitz, L., H. Takeda & D. Hepperle, 1999. Ultrastructure, cell wall composition, and phylogenetic position of Pseudodictyosphaerium jurisii (Chlorococcales, Chlorophyta) including a comparison with other picoplanktonic green algae. Phycologia 38: 100–1007.CrossRefGoogle Scholar
  24. Krienitz, L., E. H. Hegewald, D. Hepperle, V. A. R. Huss, T. Rohr & M. Wolf, 2004. Phylogenetic relationship of Chlorella and Parachlorella gen nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43: 529–542.CrossRefGoogle Scholar
  25. Krienitz, L., C. Bock, P. K. Dadheech & T. Pröschold, 2010a. Taxonomic reassessment of the genus Mychonastes (Chlorophyceae, Chlorophyta) including the description of eight new species. Phycologia 49 (in press).Google Scholar
  26. Krienitz, L., C. Bock, W. Luo & T. Pröschold, 2010b. Polyphyletic origin of the Dictyosphaerium-morphotype within Chlorellaceae (Trebouxiophyceae). Journal of Phycology 46: 559–563.CrossRefGoogle Scholar
  27. Küchler, L., 1981. Phytoplanktonuntersuchungen im Stechlinseegebiet in den Jahren 1973–1975. Limnologica 13: 83–99.Google Scholar
  28. Küchler, L., 1982. Phytoplanktonuntersuchungen im Stechlin und im Nordbecken des Nehmitzsees. Limnologica 14: 231–241.Google Scholar
  29. Lefèvre, E., C. Bardot, C. Noēl, J. F. Carrias, E. Viscogliosi, C. Amblard & T. Sime-Ngando, 2007. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environmental Microbiology 9: 61–71.CrossRefPubMedGoogle Scholar
  30. Lefèvre, E., B. Roussel, C. Amblard & T. Sime-Ngando, 2008. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. Plos One 3: e2324.CrossRefPubMedGoogle Scholar
  31. Lefranc, M., A. Thenot, C. Lepere & D. Debroas, 2005. Genetic diversity of small eukaryotes in lakes differing by their trophic status. Applied Environmental Microbiology 71: 5935–5942.CrossRefGoogle Scholar
  32. Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  33. Luo, W., S. Pflugmacher, T. Pröschold, N. Walz & L. Krienitz, 2006. Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist 157: 315–333.CrossRefPubMedGoogle Scholar
  34. Luo, W., H. R. Li, M. H. Cai & J. F. He, 2009. Diversity of microbial eukaryotes in Kongsfjorden, Svalbard. Hydrobiologia 636: 233–248.CrossRefGoogle Scholar
  35. Massana, R., V. Balagué, L. Guillou & C. Pedrós-Alió, 2004. Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiology Ecology 50: 231–243.CrossRefPubMedGoogle Scholar
  36. Medlin, L. K., H. J. Elwood, S. Stickel & M. L. Sogin, 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491–499.Google Scholar
  37. Medlin, L. K., A. G. Saez & J. R. Young, 2008. A molecular clock for coccolithophores and implications for selectivity of phytoplankton extinctions across the K/T boundary. Marine Micropaleontology 67: 69–86.CrossRefGoogle Scholar
  38. Mehner, T., J. Padisák, P. Kasprzak, R. Koschel & L. Krienitz, 2008. A test of food web hypotheses by exploring time series of fish, zooplankton and phytoplankton in an oligo-mesotrophic lake. Limnologica 38: 179–188.Google Scholar
  39. Moon-van der Staay, S. Y., R. De Wachter & D. Vaulot, 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409: 607–610.CrossRefPubMedGoogle Scholar
  40. Not, F., R. Gausling, F. Azam, J. F. Heidelberg & A. Z. Worden, 2007. Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environmental Microbiology 9: 1233–1252.CrossRefPubMedGoogle Scholar
  41. Padisák, J., L. Krienitz, R. Koschel & J. Nedoma, 1997. Deep-layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development and erosion. European Journal of Phycology 32: 403–416.Google Scholar
  42. Padisák, J., L. Krienitz, W. Scheffler, R. Koschel, J. Kristiansen & I. Grigorszki, 1998. Phytoplankton succession in the oligotrophic Lake Stechlin (Germany). Hydrobiologia 369/370: 179–197.CrossRefGoogle Scholar
  43. Padisák, J., W. Scheffler, P. Kasprzak, R. Koschel & L. Krienitz, 2003. Interannual variability in the phytoplankton composition of Lake Stechlin (1994–2000). Archiv für Hydrobiologie, Special Issue Advances in Limnology 58: 101–133.Google Scholar
  44. Padisák, J., É. Hajnal, L. Naselli Flores, M. T. Dokulil, P. Nõges & T. Zohary, 2010a. Convergence and divergence in organization of phytoplankton communities under various regimes of physical and biological control. Hydrobiologia 639: 205–220.CrossRefGoogle Scholar
  45. Padisák, J., É. Hajnal, L. Krienitz, J. Lakner & V. Üveges, 2010b. Rarity, ecological memory, rate of floral change in phytoplankton–and the mystery of the Red Cock. Hydrobiologia 653: 45–64.CrossRefGoogle Scholar
  46. Potter, D., T. C. Lajeunesse, G. W. Saunders & R. A. Anderson, 1997. Convergent evolution masks extensive biodiversity among marine coccoid picoplankton. Biodiversity and Conservation 6: 99–107.CrossRefGoogle Scholar
  47. Pröschold, T., T. Darienko, P.C. Silva, W. Reisser & L. Krienitz, 2010. The systematics of Zoochlorella revisited employing an integrative approach. Environmental Microbiology. doi: 10.1111/j.1462-2920.2010.02333.x.
  48. Richards, T. A., A. A. Vepritskiy, D. E. Gouliamova & S. A. Nierzwicki-Bauer, 2005. The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environmental Microbiology 7: 1413–1425.CrossRefPubMedGoogle Scholar
  49. Scheffler, W. & J. Padisák, 1997. Cyclotella tripartita Håkansson (Bacillariophyceae), a dominant diatom species in the oligotrophic Stechlinsee (Germany). Nova Hedwigia 65: 221–232.Google Scholar
  50. Scheffler, W. & J. Padisák, 2000. Stephanocostis chantaicus (Bacillariophyceae): morphology and population dynamics of a rare centric diatom growing in winter under ice in the oligotrophic Lake Stechlin, Germany. Archiv für Hydrobiologie 98, Algological Studies 133: 49–69.Google Scholar
  51. Scheffler, W., A. Nicklisch & D. Hepperle, 2003. Dimorphism in Cyclotella pseudocomensis (Heterokontophyta, Bacillariophyceae) as revealed by morphological, ecological and molecular methods. Archiv für Hydrobiologie, Special Issue Advances in Limnology 58: 157–173.Google Scholar
  52. Scheffler, W., A. Nicklisch & I. Schönfelder, 2005. Beiträge zur Morphologie, Ökologie und Ontogenie der planktischen Diatomee Cyclotella comensis Grunow Untersuchungen an historischem und rezenten Material. Diatom Research 20: 171–200.Google Scholar
  53. Schulz, M., R. Koschel, C. Reese & T. Mehner, 2004. Pelagic trophic transfer efficiency in an oligotrophic, dimictic deep lake (Lake Stechlin, Germany) and its relation to fisheries yield. Limnologica 34: 264–273.Google Scholar
  54. Shalchian-Tabrizi, K., K. Eikrem, K. Klaveness, D. Vaulot, M. A. Minge, F. Le Gall, K. Romari, J. Throndsen, A. Botnen, R. Massana, H. A. Thomsen & K. S. Jakobsen, 2006. Telonemia, a new protist phylum with affinity to chromist lineages. Proceedings of Biological Sciences 273: 1833–1842.CrossRefGoogle Scholar
  55. Tavera, R. & B. Díez, 2009. Multifaceted approach for the analysis of the phototrophic microbial community in a freshwater recreational area of Xochimilco, México. Hydrobiologia 636: 353–368.CrossRefGoogle Scholar
  56. Vaulot, D., W. Eikrem, M. Viprey & H. Moreau, 2008. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiology Review 32: 795–820.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • W. Luo
    • 1
    Email author
  • C. Bock
    • 2
  • H. R. Li
    • 1
  • J. Padisák
    • 3
  • L. Krienitz
    • 2
  1. 1.SOA Key Laboratory for Polar SciencePolar Research Institute of ChinaShanghaiChina
  2. 2.Leibniz-Institute of Freshwater Ecology and Inland FisheriesStechlin-NeuglobsowGermany
  3. 3.Department of LimnologyUniversity of PannoniaVeszprémHungary

Personalised recommendations