, Volume 662, Issue 1, pp 179–187 | Cite as

Morphometric and demographic responses of brachionid prey (Brachionus calyciflorus Pallas and Plationus macracanthus (Daday)) in the presence of different densities of the predator Asplanchna brightwellii (Rotifera: Asplanchnidae)

  • S. S. S. Sarma
  • Rafael Alejandro Lara Resendiz
  • S. Nandini


We quantified the indirect effects of different densities (1, 4, 16 individuals per jar) of the predator Asplanchna brightwellii on the morphometry and demography of their prey Brachionus calyciflorus and Plationus macracanthus. Population growth and life table demography experiments were separately conducted for each of the two prey rotifer species while keeping A. brightwellii in indirect contact. The brachionids were fed the green alga Chlorella vulgaris at a density of 1 × 106 cells ml−1. As compared to those cultured in the absence of the predator, in the presence of A. brightwellii the postero-lateral spines of P. macracanthus increased by about 15 μm, while in B. calyciflorus the increase was more (>80 μm). For both the brachionid species, the peak population density significantly decreased in the presence of A. brightwellii. The reproductive variables viz., net reproductive rate, generation time, and the rate of population increase of B. calyciflorus and P. macracanthus were negatively affected in the presence of kairomones from A. brightwellii.


Kairomones Predator–prey interactions Life history Population growth 



This study was supported by DGAPA (PAPIIT-IN212709). Additional financial support was received from CONACyT (SNI Project 102220). SSSS and SN thank the university authorities (PASPA) for financial assistance during a sabbatical at IGB, Germany.


  1. Altwegg, R., M. Eng, S. Caspersen & B. R. Anholt, 2006. Functional response and prey defence level in an experimental predator–prey system. Evolutionary Ecology Research 8: 115–128.Google Scholar
  2. Borowitzka, M. A. & L. J. Borowitzka, 1988. Micro-algal Biotechnology. Cambridge University Press, London.Google Scholar
  3. Dodson, S. I. & D. G. Frey, 2001. Cladocera and other Branchiopoda. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates. Academic Press, London: 850–914.Google Scholar
  4. Dumont, H. J. & S. S. S. Sarma, 1995. Demography and population growth of Asplanchna girodi (Rotifera) as a function of prey (Anuraeopsis fissa) density. Hydrobiologia 306: 97–107.CrossRefGoogle Scholar
  5. Dumont, H. J., J. G. Tundisi & K. Roche (eds), 1990. Intrazooplankton Predation. Developments in Hydrobiology No. 60. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  6. Dumont, H. J., S. S. S. Sarma & A. J. Ali, 1995. Laboratory studies on the population dynamics of Anuraeopsis fissa (Rotifera) in relation to food density. Freshwater Biology 33: 39–46.CrossRefGoogle Scholar
  7. Garza-Mouriño, G., M. Silva-Briano, S. Nandini, S. S. S. Sarma & M. E. Castellanos-Páez, 2005. Morphological and morphometrical variations of selected rotifer species in response to predation: a seasonal study of selected brachionid species from Lake Xochimilco (Mexico). Hydrobiologia 546: 169–179.CrossRefGoogle Scholar
  8. Gilbert, J. J., 1966. Rotifer ecology and embryological induction. Science 151: 1234–1237.CrossRefPubMedGoogle Scholar
  9. Gilbert, J. J., 1998. Kairomone-induced morphological defenses in rotifers. In Tollrian, R. & C. D. Harvell (eds), The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton: 127–141.Google Scholar
  10. Gilbert, J. J., 2009. Predator-specific inducible defenses in the rotifer Keratella tropica. Freshwater Biology 54: 1933–1946.CrossRefGoogle Scholar
  11. Kerfoot, W. C. & A. Sih (eds), 1987. Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover.Google Scholar
  12. Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. Ein Bestimmungswerk begründet von Max Voigt. Bornträger, Stuttgart, Vol. 1: Textband 673 pp., Vol. 2: Tafelband, 234 pp.Google Scholar
  13. Krebs, C. J., 1985. Ecology: the experimental analysis of distribution and abundance, 3rd ed. Harper and Row, New York.Google Scholar
  14. Pavón-Meza, E. L., S. S. S. Sarma & S. Nandini, 2008. Combined effects of temperature, food availability and predator’s (Asplanchna girodi) allelochemicals on the demography and population growth of Brachionus havanaensis (Rotifera). Allelopathy Journal 21: 95–106.Google Scholar
  15. Peña-Aguado, F., J. Morales-Ventura, S. Nandini & S. S. S. Sarma, 2008. Influence of vertebrate and invertebrate infochemicals on the population growth and epizoic tendency of Brachionus rubens (Ehrenberg) (Rotifera: Brachionidae). Allelopathy Journal 22: 123–130.Google Scholar
  16. Pourriot, R., 1974. Predator–prey relationships in rotifers: effect of the predator (Asplanchna brightwelli) on the morphology of the prey (Brachionus bidentata). Annales de Limnologie 5: 43–55.Google Scholar
  17. Pourriot, R., 1982. Reproductive strategies in rotifers. Comptes Rendus de l'Académie des sciences 296: 1109–1111.Google Scholar
  18. Ramírez-Pérez, T., S. S. S. Sarma & S. Nandini, 2004. Effects of mercury on the life table demography of the rotifer Brachionus calyciflorus Pallas (Rotifera). Ecotoxicology 13: 535–544.CrossRefPubMedGoogle Scholar
  19. Ricci, C., 1983. Life histories of some species of Rotifera Bdelloidea. Hydrobiologia 104: 175–180.CrossRefGoogle Scholar
  20. Sarma, S. S. S. & S. Nandini, 2002. Comparative life table demography and population growth of Brachionus macracanthus Daday, 1905 and Platyias quadricornis Ehrenberg, 1832 (Rotifera, Brachionidae) in relation to algal (Chlorella vulgaris) food density. Acta Hydrochimica et Hydrobiologica 30: 128–140.CrossRefGoogle Scholar
  21. Sarma, S. S. S. & S. Nandini, 2007. Small prey size offers immunity to predation: a case study on two species of Asplanchna and three brachionid prey (Rotifera). Hydrobiologia 593: 67–76.CrossRefGoogle Scholar
  22. Sarma, S. S. S. & T. R. Rao, 1991. The combined effects of food and temperature on the life history parameters of Brachionus patulus Müller (Rotifera). Internationale Revue der gesamten Hydrobiologie 76: 225–239.CrossRefGoogle Scholar
  23. Stemberger, R. S., 1988. Reproductive costs and hydrodynamic benefits of chemically induced defenses in Keratella testudo. Limnology and Oceanography 33: 593–606.CrossRefGoogle Scholar
  24. Tollrian, R., 1995. Predator-induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76: 1691–1705.CrossRefGoogle Scholar
  25. Wallace, R. L., T. W. Snell, C. Ricci & T. Nogrady, 2006. Rotifera Part 1: Biology, Ecology and Systematics. Guides to the identification of the microinvertebrates of the continental waters of the world. Kenobi Productions Gent/Backhuys, The Netherlands.Google Scholar
  26. Walz, N., 1987. Comparative population dynamics of the rotifers Brachionus angularis and Keratella cochlearis. Hydrobiologia 147: 209–213.CrossRefGoogle Scholar
  27. Weber, C.I., 1993 Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. 4th ed. United States Environmental Protection Agency, Cincinnati, Ohio, EPA/600/4-90/027F, xv + 293 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • S. S. S. Sarma
    • 1
  • Rafael Alejandro Lara Resendiz
    • 1
  • S. Nandini
    • 1
  1. 1.Laboratorio de Zoologia Acuatica, División de Investigacion y PosgradoUniversidad Nacional Autonoma de Mexico, Campus IztacalaTlalnepantlaMexico

Personalised recommendations