Hydrobiologia

, Volume 658, Issue 1, pp 233–252

The specific inherent optical properties of three sub-tropical and tropical water reservoirs in Queensland, Australia

Primary research paper

Abstract

The underwater light climate, which is a major influence on the ecology of aquatic systems, is affected by the absorption and scattering processes that take place within the water column. Knowledge of the specific inherent optical properties (SIOPs) of water quality parameters and their spatial variation is essential for the modelling of underwater light fields and remote sensing applications. We measured the SIOPs and water quality parameter concentrations of three large inland water impoundments in Queensland, Australia. The measurements ranged from 0.9 to 42.7 μg l−1 for chlorophyll a concentration, 0.9–170.4 mg l−1 for tripton concentration, 0.36–1.59 m−1 for aCDOM(440) and 0.15–2.5 m for Secchi depth. The SIOP measurements showed that there is sufficient intra-impoundment variation in the specific absorption and specific scattering of phytoplankton and tripton to require a well distributed network of measurement stations to fully characterise the SIOPs of the optical water quality parameters. While significantly different SIOP sets were measured for each of the study sites the measurements were consistent with published values in other inland waters. The multiple measurement stations were allocated into optical domains as a necessary step to parameterise a semi-analytical inversion remote sensing algorithm. This article also addresses the paucity of published global inland water SIOP sets by contributing Australian SIOP sets to allow international and national comparison.

Keywords

Absorption Scattering Remote sensing Phytoplankton Tripton CDOM 

References

  1. Aas, E., J. Høkedal & K. Sørensen, 2005. Spectral backscattering coefficient in coastal waters. International Journal of Remote Sensing 26: 331–343.CrossRefGoogle Scholar
  2. Ahn, Y. H., A. Bricaud & A. Morel, 1992. Light backscattering efficiency and related properties of some phytoplankters. Deep-Sea Research 39: 1835–1855.CrossRefGoogle Scholar
  3. Bainbridge, Z., J. Brodie, S. Lewis, I. Duncan, D. Post, J. Faithful & M. Furnas, 2006a. Event-based water quality monitoring in the Burdekin Dry Tropics Region: 2004/05 wet season. ACTFR Report No. 06/01 for the Burdekin Dry Tropics NRM. Australian Centre for Tropical Freshwater Research, James Cook University, Townsville: 83.Google Scholar
  4. Bainbridge, Z., S. Lewis, J. Brodie, J. Faithful, M. Maughan, D. Post, P. O’Reagain, R. Bartley, S. Ross, B. Schaffelke, T. McShane & L. Baynes, 2006b. Monitoring of sediments and nutrients in the Burdekin Dry Tropics Region: 2005/06 wet season. ACTFR Report No. 06/13 for the Burdekin Dry Tropics NRM. Centre for Tropical Freshwater Research, James Cook University, Townsville: 97.Google Scholar
  5. Belzile, C., W. F. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai & C. S. Roesler, 2004. Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake. Water Resources Research 40: W12512.CrossRefGoogle Scholar
  6. Binding, C. E., J. H. Jerome, R. P. Bukata & W. G. Booty, 2008. Spectral absorption properties of dissolved and particulate matter in Lake Erie. Remote Sensing of Environment 112: 1702–1711.CrossRefGoogle Scholar
  7. Boss, E., R. Collier, G. Larson, K. Fennel & W. Pegau, 2007. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR. Hydrobiologia 574: 149–159.CrossRefGoogle Scholar
  8. Bricaud, A., M. Babin, A. Morel & H. Claustre, 1995. Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton: analysis and parameterization. Journal of Geophysical Research: Oceans 100: 13321–13332.CrossRefGoogle Scholar
  9. Bricaud, A., H. Claustre, J. Ras & K. Oubelkheir, 2004. Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. Journal of Geophysical Research: Oceans 109: C11010.CrossRefGoogle Scholar
  10. Buiteveld, H., 1995. A model for calculation of diffuse light attenuation (PAR) and Secchi depth. Aquatic Ecology 29: 55–65.CrossRefGoogle Scholar
  11. Burford, M. A. & M. J. O’Donohue, 2006. A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs. Freshwater Biology 51: 973–982.CrossRefGoogle Scholar
  12. Campbell, G. & S. R. Phinn, 2009. Accuracy and precisions of water quality parameters retrieved from particle swarm optimisation in a sub-tropical lake. In Bostater, C. R., Jr., S. P. Mertikas, X. Neyt & M. Velez-Reyes (eds), Proceedings SPIE Vol. 7473, Remote Sensing of the Ocean, Sea Ice, and Large Water Regions 2009. Berlin, Germany, 31 August 2009. doi:10.1117/12.829737.
  13. Campbell, G. & S. R. Phinn, 2010. An assessment of the accuracy and precision of water quality parameters retrieved with the Matrix Inversion Method. Limnology and Oceanography Methods 8: 16–29.CrossRefGoogle Scholar
  14. Carder, K. L., R. G. Steward, G. R. Harvey & P. B. Ortner, 1989. Marine humic and fulvic-acids: their effects on remote-sensing of ocean chlorophyll. Limnology and Oceanography 34: 68–81.CrossRefGoogle Scholar
  15. Clementson, L. A., J. S. Parslow, A. R. Turnbull, D. C. McKenzie & C. E. Rathbone, 2001. Optical properties of waters in the Australasian sector of the Southern Ocean. Journal of Geophysical Research: Oceans 106: 31611–31625.CrossRefGoogle Scholar
  16. Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.CrossRefGoogle Scholar
  17. Commonwealth Bureau of Meteorology, 2009. Climate statistics for Australian locations [available on internet at http://www.bom.gov.au/climate/averages/tables/cw_040189.shtml, accessed 9 Oct 2009].
  18. Dall’Olmo, G. & A. A. Gitelson, 2005. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results. Applied Optics 44: 412–422.CrossRefPubMedGoogle Scholar
  19. Dana, D. R. & R. A. Maffione, 2002. Determining the backward scattering coefficient with fixed-angle backscattering sensors—revisited. In Proceedings of the Ocean Optics XVI Conference, 18–22 November 2002, Santa Fe, NM, USA.Google Scholar
  20. Davies-Colley, R. J. & W. N. Vant, 1987. Absorption of light by yellow substance in freshwater lakes. Limnology and Oceanography 32: 416–425.CrossRefGoogle Scholar
  21. Davies-Colley, R. J., R. D. Pridmore & J. E. Hewitt, 1986. Optical properties of some freshwater phytoplanktonic algae. Hydrobiologia 133: 165–178.CrossRefGoogle Scholar
  22. Dekker, A. G., T. J. M. Malthus, M. M. Wijnen & E. Seyhan, 1992. The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters. Remote Sensing of Environment 41: 211–225.CrossRefGoogle Scholar
  23. Dekker, A. G., R. J. Vos & S. W. M. Peters, 2002. Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. International Journal of Remote Sensing 23: 15–35.CrossRefGoogle Scholar
  24. Dekker, A. G., V. E. Brando, K. Oubelkheir, M. Wettle, L. A. Clementson, S. Peters, R. Pasterkamp & H. van der Woerd, 2004. When freshwater meets ocean water: how variable SIOPs affect remote sensing products of estuaries, bays and coastal seas. In Proceedings of the Ocean Optics XVII Conference, 25–29 October 2004, Fremantle, Australia.Google Scholar
  25. Douglas, G., M. Palmer, G. Caitcheon & P. Orr, 2007. Identification of sediment sources to Lake Wivenhoe, South-East Queensland, Australia. Marine & Freshwater Research 58: 793–810.CrossRefGoogle Scholar
  26. Erm, A., H. Arst, P. Nõges, A. Reinart & L. Sipelgas, 2002. Temporal variations in bio-optical properties of four North Estonian lakes in 1999–2000. Geophysica 38: 89–111.Google Scholar
  27. Hakvoort, H., J. F. de Haan, R. R. W. Jordans, R. J. Vos, S. W. M. Peters & M. Rijkeboer, 2002. Towards airborne remote sensing of water quality in The Netherlands—validation and error analysis. ISPRS Journal of Photogrammetry and Remote Sensing 57: 171–183.CrossRefGoogle Scholar
  28. Hayase, K. & H. Tsubota, 1985. Sedimentary humic acid and fulvic acid as fluorescent organic materials. Geochimica et Cosmochimica Acta 49: 159–163.CrossRefGoogle Scholar
  29. Helms, J. R., A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber & K. Mopper, 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography 53: 955–969.CrossRefGoogle Scholar
  30. Herlevi, A., 2002a. Inherent and apparent optical properties in relation to water quality in Nordic waters. Ph.D. Thesis, Division of Geophysics, University of Helsinki.Google Scholar
  31. Herlevi, A., 2002b. A study of scattering, backscattering and a hyperspectral reflectance model for boreal waters. Geophysica 38: 113–132.Google Scholar
  32. Hoepffner, N. & S. Sathyendranath, 1991. Effect of pigment composition on absorption properties of phytoplankton. Marine Ecology Progress Series 73: 11–23.CrossRefGoogle Scholar
  33. Ibelings, B. W., L. R. Mur & A. E. Walsby, 1991. Diurnal changes in buoyancy and vertical-distribution in populations of Microcystis in 2 shallow lakes. Journal of Plankton Research 13: 419–436.CrossRefGoogle Scholar
  34. Joo, M., B. Yu, B. Fentie & C. Caroll, 2005. Estimation of long-term sediment loads in the Fitzroy catchment, Queensland, Australia. In Zerger, A. & R. M. Argent (eds), MODSIM 2005 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand: 1161–1167.Google Scholar
  35. Jupp, D. L. B., J. T. O. Kirk & G. P. Harris, 1994. Detection, identification and mapping of cyanobacteria-using remote sensing to measure the optical quality of turbid inland waters. Australian Journal of Marine and Freshwater Research 45: 801–828.CrossRefGoogle Scholar
  36. Kallio, K., J. Pulliainen & P. Ylöstalo, 2005. MERIS, MODIS and ETM+ channel configurations in the estimation of lake water quality from subsurface reflectance using semianalytical and empirical algorithms. Geophysica 41: 31–55.Google Scholar
  37. Kirk, J. T. O., 1986. Optical limnology—a manifesto. In Williams, W. D. & P. De Deckker (eds), Limnology in Australia. CSIRO, Dordrecht.Google Scholar
  38. Kirk, J. T. O., 1992. Monte Carlo modeling of the performance of a reflective tube absorption meter. Applied Optics 31: 6463–6468.CrossRefPubMedGoogle Scholar
  39. Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge: 509 pp.Google Scholar
  40. Kishino, M., M. Takahashi, N. Okami & S. Ichimura, 1985. Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bulletin of Marine Science 37: 634–642.Google Scholar
  41. Kosten, S., F. Roland, D. Marques, E. H. Van Nes, N. Mazzeo, L. D. L. Sternberg, M. Scheffer & J. J. Cole, 2010. Climate-dependent CO2 emissions from lakes. Global Biogeochemical Cycles 24: GB2007.Google Scholar
  42. Kutser, T., 2004. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnology and Oceanography 49: 2179–2189.CrossRefGoogle Scholar
  43. Kutser, T., A. Herlevi, K. Kallio & H. Arst, 2001. A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes. The Science of the Total Environment 268: 47–58.CrossRefPubMedGoogle Scholar
  44. Kutser, T., L. Metsamaa, N. Strömbeck & E. Vahtmäe, 2006. Monitoring cyanobacterial blooms by satellite remote sensing. Estuarine, Coastal and Shelf Science 67: 303–312.CrossRefGoogle Scholar
  45. Le, C., Y. Li, Y. Zha & D. Sun, 2009. Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China. Hydrobiologia 619: 27–37.CrossRefGoogle Scholar
  46. Lohrenz, S. E., A. D. Weidemann & M. Tuel, 2003. Phytoplankton spectral absorption as influenced by community size structure and pigment composition. Journal of Plankton Research 25: 35–61.CrossRefGoogle Scholar
  47. Loiselle, S. A., L. Bracchini, A. Cozar, A. M. Dattilo, A. Tognazzi & C. Rossi, 2009. Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes. Journal of Photochemistry and Photobiology B, Biology 95: 129–137.CrossRefPubMedGoogle Scholar
  48. Ma, R. H., J. Tang, J. Dai, Y. Zhang & Q. Song, 2006. Absorption and scattering properties of water body in Taihu Lake, China: absorption. International Journal of Remote Sensing 27: 4277–4304.CrossRefGoogle Scholar
  49. Ma, R. H., D. L. Pan, H. T. Duan & Q. J. Song, 2009. Absorption and scattering properties of water body in Taihu Lake, China: backscattering. International Journal of Remote Sensing 30: 2321–2335.CrossRefGoogle Scholar
  50. Maffione, R. A. & D. R. Dana, 1997. Instruments and methods for measuring the backward-scattering coefficient of ocean waters. Applied Optics 36: 6057–6067.CrossRefPubMedGoogle Scholar
  51. Metsamaa, L., T. Kutser & N. Strombeck, 2006. Recognising cyanobacterial blooms based on their optical signature: a modelling study. Boreal Environment Research 11: 493–506.Google Scholar
  52. Minor, E. & B. Stephens, 2008. Dissolved organic matter characteristics within the Lake Superior watershed. Organic Geochemistry 39: 1489–1501.CrossRefGoogle Scholar
  53. Mitchell, B. G., 1990. Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique. In Spinrad, R. W. (ed), Proceedings SPIE Vol. 1302, Ocean Optics X. Orlando, FL, USA, 16 April 1990. doi:10.1117/12.21440.
  54. Mitrovic, S. M., L. C. Bowling & R. T. Buckney, 2001. Vertical disentrainment of Anabaena circinalis in the turbid, freshwater Darling River, Australia: quantifying potential benefits from buoyancy. Journal of Plankton Research 23: 47–55.CrossRefGoogle Scholar
  55. Morel, A. & L. Prieur, 1977. Analysis of variations in ocean color. Limnology and Oceanography 22: 709–722.CrossRefGoogle Scholar
  56. Morris, D. P. & B. R. Hargreaves, 1997. The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnology and Oceanography 42: 239–249.CrossRefGoogle Scholar
  57. Mueller, J. L., G. S. Fargion, C. R. McClain, S. Pegau, J. R. V. Zaneveld, B. G. Mitchell, M. Kahru, J. Wieland & M. Stramska, 2003. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols. NASA, Greenbelt, MD.Google Scholar
  58. O’Reagain, P. J., J. Brodie, G. Fraser, J. J. Bushell, C. H. Holloway, J. W. Faithful & D. Haynes, 2005. Nutrient loss and water quality under extensive grazing in the upper Burdekin river catchment, North Queensland. Marine Pollution Bulletin 51: 37–50.CrossRefPubMedGoogle Scholar
  59. Ohi, N., H. Saito & S. Taguchi, 2005. Diel patterns in chlorophyll a specific absorption coefficient and absorption efficiency factor of picoplankton. Journal of Oceanography 61: 379–388.CrossRefGoogle Scholar
  60. Okullo, W., T. Ssenyonga, B. Hamre, Ø. Frette, K. Sørensen, J. J. Stamnes, A. Steigen & K. Stamnes, 2007. Parameterization of the inherent optical properties of Murchison Bay, Lake Victoria. Applied Optics 46: 8553–8561.CrossRefPubMedGoogle Scholar
  61. Oubelkheir, K., L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke & P. Daniel, 2006. Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system. Journal of Geophysical Research: Oceans 111: C07021.CrossRefGoogle Scholar
  62. Paavel, B., H. Arst & A. Herlevi, 2007. Dependence of spectral distribution of inherent optical properties of lake waters on the concentrations of different water constituents. Nordic Hydrology 38: 265–285.CrossRefGoogle Scholar
  63. Pegau, W. S. & J. R. V. Zaneveld, 1993. Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum. Limnology and Oceanography 38: 188–192.CrossRefGoogle Scholar
  64. Pegau, W. S., D. Gray & J. R. V. Zaneveld, 1997. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Applied Optics 36: 6035–6046.CrossRefPubMedGoogle Scholar
  65. Petzold, T. J., 1972. Volume Scattering Functions for Selected Ocean Waters. Scripps Institution of Oceanography, San Diego.Google Scholar
  66. Pierson, D. C. & N. Strömbeck, 2001. Estimation of radiance reflectance and the concentrations of optically active substances in Lake Mälaren, Sweden, based on direct and inverse solutions of a simple model. The Science of the Total Environment 268: 171–188.CrossRefPubMedGoogle Scholar
  67. Richardson, L. L., 1996. Remote sensing of algal bloom dynamics. BioScience 46: 492–501.CrossRefGoogle Scholar
  68. Rijkeboer, M., A. G. Dekker & H. J. Gons, 1997. Subsurface irradiance reflectance spectra of inland waters differing in morphometry and hydrology. Aquatic Ecology 31: 313–323.CrossRefGoogle Scholar
  69. Risovic, D., 1993. Two-component model of sea particle size distribution. Deep Sea Research Part I: Oceanographic Research Papers 40: 1459–1473.CrossRefGoogle Scholar
  70. Sathyendranath, S., L. Lazzara & L. Prieur, 1987. Variations in the spectral values of specific absorption of phytoplankton. Limnology and Oceanography 32: 403–415.CrossRefGoogle Scholar
  71. South East Queensland Water Corporation Ltd, 2005. Key features of dams and storages [available online at http://www.seqwater.com.au/files/pdf/KeyDamStatistics.pdf, accessed 25 May 2006].
  72. Strömbeck, N. & D. C. Pierson, 2001. The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters. The Science of the Total Environment 268: 123–137.CrossRefPubMedGoogle Scholar
  73. Sunwater, 2005. Sunwater 04-05 annual report [available online at http://www.sunwater.com.au/pdf/about/SunWater_Annual_Report.pdf, accessed 25 May 2006].
  74. Tilstone, G. H., G. F. Moore, K. Sorensen, R. Doerffer, R. Rottgers, K. G. Ruddick, R. Pasterkamp & P. V. Jorgensen, 2002, REVAMP protocols document. European Space Agency: 77 pp.Google Scholar
  75. Twardowski, M. S., E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard & J. R. V. Zaneveld, 2001. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. Journal of Geophysical Research: Oceans 106: 14129–14142.CrossRefGoogle Scholar
  76. Ulloa, O., S. Sathyendranath & T. Platt, 1994. Effect of the particle-size distribution on the backscattering ratio in seawater. Applied Optics 33: 7070–7077.CrossRefPubMedGoogle Scholar
  77. Vaillancourt, R. D., C. W. Brown, R. R. L. Guillard & W. M. Balch, 2004. Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy. Journal of Plankton Research 26: 191–212.CrossRefGoogle Scholar
  78. Van Heukelem, L. & C. S. Thomas, 2001. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. Journal of Chromatography A 910: 31–49.CrossRefPubMedGoogle Scholar
  79. Vidussi, F., H. Claustre, B. B. Manca, A. Luchetta & J. C. Marty, 2001. Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. Journal of Geophysical Research: Oceans 106: 19939–19956.CrossRefGoogle Scholar
  80. Vos, R. J., J. H. M. Hakvoort, R. R. W. Jordans & B. W. Ibelings, 2003. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes. The Science of the Total Environment 312: 221–243.CrossRefPubMedGoogle Scholar
  81. WET Labs Inc, 2005. ac-9 Protocol Document (Revision J). Western Environmental Technology Laboratories (WETLabs), Philomath, OR: 41.Google Scholar
  82. Wettle, M. & V. E. Brando, 2006. SAMBUCA semi-analytical model for bathymetry, un-mixing, and concentration assessment. CSIRO Land and Water Science Report. CSIRO Land and Water, Canberra: 27.Google Scholar
  83. Whitlock, C. H., L. R. Poole, J. W. Usry, W. M. Houghton, W. G. Witte, W. D. Morris & E. A. Gurganus, 1981. Comparison of reflectance with backscatter and absorption parameters for turbid waters. Applied Optics 20: 517–522.CrossRefPubMedGoogle Scholar
  84. Zaneveld, J. R. V., J. C. Kitchen & C. Moore, 1994. The scattering error correction of reflecting-tube absorption meters. In Jaffe, J. S. (ed), Proceedings SPIE Vol. 2258, Ocean Optics XII. Bergen, Norway, 13 June 1994. doi:10.1117/12.190095.
  85. Zhang, Y. L., B. Zhang, X. Wang, J. S. Li, S. Feng, Q. H. Zhao, M. L. Liu & B. Q. Qin, 2007. A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China. Hydrobiologia 592: 105–120.CrossRefGoogle Scholar
  86. Zhang, Y. L., M. L. Liu, X. Wang, G. W. Zhu & W. M. Chen, 2009. Bio-optical properties and estimation of the optically active substances in Lake Tianmuhu in summer. International Journal of Remote Sensing 30: 2837–2857.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Glenn Campbell
    • 1
    • 2
  • Stuart R. Phinn
    • 1
  • Paul Daniel
    • 3
  1. 1.School of Geography, Planning and Environmental Management, Centre for Spatial Environmental ResearchUniversity of QueenslandSt LuciaAustralia
  2. 2.Australian Centre for Sustainable Catchments and Faculty of Engineering and SurveyingUniversity of Southern QueenslandToowoombaAustralia
  3. 3.Environmental Earth Observation GroupCSIRO Land and WaterCanberraAustralia

Personalised recommendations