Hydrobiologia

, Volume 658, Issue 1, pp 163–171 | Cite as

Ecological strategy of rotifer (Brachionus calyciflorus) exposed to predator- and competitor-conditioned media

Primary research paper

Abstract

Chemical communication may inform about the location of prey, predators, co-specifics, and mate partners in zooplankton. In this study, we evaluated several life-history traits of the rotifer, Brachionus calyciflorus, exposed to conditioned media by a rotifer predator (Asplanchna brightwelli) and a cladocera competitor (Daphnia similis), quantifying population growth and life-table demography at two algal food levels (2.0 and 0.5 × 106 cells ml−1 of Chlorella pyrenoidosa). At both food levels, B. calyciflorus grown in predator-conditioned media had lower population abundance and slower population growth rate than controls. Conversely, the competitor-conditioned media treatments produced both higher rotifer population abundance and faster population growth rate than controls. Life-history parameters varied significantly depending on the presence of predator and competitor-conditioned media. The Asplanchna-conditioned media significantly decreased gross reproductive rate (GRR): 8–9 offsprings per female; net reproductive rate (R0): 6–7 offsprings per female; population growth rate (r): 0.34–0.37 day−1; and increased generation time (T): 5.5–5.6 days. On the other hand, The Daphnia-conditioned media significantly increased the GRR (13–14 offsprings per female); net reproductive rate (8–9 offsprings per female); population growth rate (0.42–0.43 day−1); and decreased generation time (4.9–5.0 days). However, the effects of food level on the life-history characteristic were not significant in both treatments. Maximum values of the population abundance and the population growth rate are significantly influenced by the predator densities and pre-culture time. This study suggests that rotifers use variable life-history strategies (low reproduction and high survivorship versus high reproduction and low survivorship) based on the presence of predators and competitors.

Keywords

Chemical communication Life table Population growth Brachionus calyciflorus Predator-competitor induce 

References

  1. Brönmark, C. & L. A. Hansson, 2000. Chemical communication in aquatic systems: an introduction. Oikos 88: 103–109.CrossRefGoogle Scholar
  2. Burns, C. W. & J. J. Gilbert, 1986a. Direct observations of the mechanisms of interference between Daphnia and Keratella cochlearis. Limnology and Oceanography 31: 859–866.CrossRefGoogle Scholar
  3. Burns, C. W. & J. J. Gilbert, 1986b. Effects of daphnid size and density on interference between Daphnia and Keratella cochlearis. Limnology and Oceanography 31: 848–858.CrossRefGoogle Scholar
  4. Conde-Porcuna, J. M., 2000. Relative importance of competition with Daphnia (Cladocera) and nutrient limitation on Anuraeopsis (Rotifera) population dynamics in a laboratory study. Freshwater Biology 44: 423–430.CrossRefGoogle Scholar
  5. Garcia, C. E., D. D. Chaparro-Herrera, S. Nandini & S. S. S. Sarma, 2007. Life-history strategies of Brachionus havanaensis subject to kairomones of vertebrate and invertebrate predators. Chemistry and Ecology 23: 303–313.CrossRefGoogle Scholar
  6. Gilbert, J. J., 1966. Rotifer ecology and embryological induction. Science 151: 1234–1237.CrossRefPubMedGoogle Scholar
  7. Gilbert, J. J., 1976. Selective cannibalism in the rotifer Asplanchna sieboldi: contact recognition of morphotype and clone. PNAS 73: 3233–3237.CrossRefPubMedGoogle Scholar
  8. Gilbert, J. J., 1985a. Competition between rotifers and Daphnia. Ecology 66: 1943–1950.CrossRefGoogle Scholar
  9. Gilbert, J. J., 1985b. Escape response of the rotifer Polyarthra: a high-speed cinematographic analysis. Oecologia 66: 322–331.CrossRefGoogle Scholar
  10. Gilbert, J. J., 1988a. Suppression of rotifer populations by Daphnia: a review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnology and Oceanography 33: 1286–1303.CrossRefGoogle Scholar
  11. Gilbert, J. J., 1988b. Susceptibilities of ten rotifer species to interference from Daphnia pulex. Ecology 69: 1826–1838.CrossRefGoogle Scholar
  12. Gilbert, J. J., 1999. Kairomone-induced morphological defences in rotifers. In Tollrian, R. & C. D. Harvell (eds), The Ecology and Evolution of Inducible Defense. Princeton University Press, Princeton: 127–141.Google Scholar
  13. Gilbert, J. J. & R. S. Stemberger, 1984. Asplanchna-induced polymorphism in the rotifer Keratella slacki. Limnology and Oceanography 29: 1309–1316.CrossRefGoogle Scholar
  14. Lass, S. & P. Spaak, 2003. Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491: 221–239.CrossRefGoogle Scholar
  15. Macisaac, H. J. & J. J. Gilbert, 1989. Competition between rotifers and cladocerans of different body sizes. Oecologia 81: 295–301.Google Scholar
  16. Nandini, S., S. S. S. Sarma & N. O. Hurtado-Bocanegra, 2002. Effect of four species of cladocerans (Crustacea) on the population growth of Brachionus patulus (Rotifera). Acta Hydrochimica Et Hydrobiologica 30: 101–107.CrossRefGoogle Scholar
  17. Nogrady, T., R. L. Wallace & T. W. Snell, 1993. Biology, ecology and systematics. In Dumont, H. J. (ed.), Rotifera. SPB Academic Publishing, Hague.Google Scholar
  18. Pianka, E. R., 1988. Evolutionary Ecology. Harper and Row, New York.Google Scholar
  19. Sarma, S. S. S. & S. Nandini, 2001. Life table demography and population growth of Brachionus variabilis Hempel, 1896 in relation to Chlorella vulgaris densities. Hydrobiologia 446: 75–83.CrossRefGoogle Scholar
  20. Sarma, S. S. S. & S. Nandini, 2002. Comparative life table demography and population growth of Brachionus macracanthus Daday, 1905 and Platyias quadricornis Ehrenberg, 1832 (Rotifera, Brachionidae) in relation to algal (Chlorella vulgaris) food density. Acta Hydrochimica Et Hydrobiologica 30: 128–140.CrossRefGoogle Scholar
  21. Sarma, S. S. S., S. Nandini & R. D. Gulati, 2002. Cost of reproduction in selected species of zooplankton (rotifers and cladocerans). Hydrobiologia 481: 89–99.CrossRefGoogle Scholar
  22. Sarma, S. S. S., S. Nandini & R. D. Gulati, 2005. Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542: 315–333.CrossRefGoogle Scholar
  23. Snell, T. W., 1998. Chemical ecology of rotifers. Hydrobiologia 387/388: 267–276.CrossRefGoogle Scholar
  24. Snell, T. W. & C. E. King, 1977. Lifespan and fecundity patterns in rotifers: the cost of reproduction. Evolution 31: 882–890.CrossRefGoogle Scholar
  25. Stemberger, R. S., 1988. Reproductive costs and hydrodynamic benefits of chemically induced defenses in Keratella testudo. Limnology and Oceanography 33: 593–606.CrossRefGoogle Scholar
  26. Stemberger, R. S. & J. J. Gilbert, 1985. Body size, food concentration and population growth in planktonic rotifers. Ecology 66: 1151–1159.CrossRefGoogle Scholar
  27. Stibor, H. & J. Lüning, 1994. Predator-induced phenotypic variation in the pattern of growth and reproduction in Daphnia hyalina (Crustacea: Cladocera). Functional Ecology 8: 97–101.CrossRefGoogle Scholar
  28. Weber, A. & S. Declerck, 1997. Phenotypic plasticity of Daphnia life history traits in response to predator kairomones: genetic variability and evolutionary potential. Hydrobiologia 360: 89–99.CrossRefGoogle Scholar
  29. Weider, L. & J. Pijanowska, 1993. Plasticity of Daphnia life histories in response to chemical cues from predators. Oikos 67: 385–392.CrossRefGoogle Scholar
  30. Xi, Y. L. & A. Hagiwara, 2007. Competition between the rotifer Brachionus calyciflorus and the Cladoceran Moina macrocopa in relation to algal food concentration and initial rotifer population density. Journal of Freshwater Ecology 22: 421–427.Google Scholar
  31. Zhang, Z. S. & X. F. Huang, 1991. Method for Study on Freshwater Plankton. Science Press, Beijing. (in Chinese).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life SciencesNanjing Normal UniversityNanjingChina
  2. 2.School of BiologyGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations