Advertisement

Hydrobiologia

, Volume 655, Issue 1, pp 197–204 | Cite as

Effect of anthropogenic feeding regimes on activity rhythms of laboratory mussels exposed to natural light

  • Anthony A. Robson
  • Carlos Garcia de Leaniz
  • Rory P. Wilson
  • Lewis G. Halsey
Primary research paper

Abstract

Anthropogenic disturbance may affect animal behaviour and should generally be minimised. We examined how anthropogenic disturbance (24 h food deprivation) affected circadian rhythms in laboratory mussels Mytilus edulis exposed to natural light in the absence of tides. Repeated measures data were collected on mussel gape angle, exhalant pumping and valve adduction using a Hall sensor system over eight consecutive 24 h periods when exposed to two feeding conditions after 24 h food deprivation. Mussels (fed once per day at either midday or midnight) exposed to natural light showed a clear day–night rhythm with increased nocturnal activity: significantly greater gape angle, increased exhalant pumping and had significantly higher valve adduction rates. However, circadian rhythms were less clear directly after anthropogenic food deprivation, in terms of the circadian rhythm in gape angle becoming significantly more apparent over the following days. Unlike mussels fed at midnight, those fed at midday displayed no significant change in gape angle from the hour before to the hour after they were fed, i.e. mussels given food at midday reacted to this food less than mussels fed at midnight. We suggest that independent of feeding time, laboratory mussels exposed to natural light and free from anthropogenic disturbance increase feeding activity at night because their circadian rhythms are strongly influenced by light levels. This study emphasises that the behaviour of animals in the laboratory and in the wild can be altered by anthropogenic disturbances such as vibrations caused by experimental setups and artificial illumination at night.

Keywords

Anthropogenic Circadian Tidal Lunar Light Zeitgeber Bivalve Behaviour Rhythm 

Notes

Acknowledgments

We are most grateful to Jonathan Green, Graeme Hays, Martin Lilley and James Wilson for help during the study. This work was funded by the European Social Fund and Deep Dock Ltd.

References

  1. Ameyaw-Akumfi, C. & E. Naylor, 1987. Temporal patterns of shell-gape in Mytilus Edulis. Marine Biology 95: 237–242.CrossRefGoogle Scholar
  2. Andreu, B., 1960. Ensayos sobre el efecto de la luz en el ritmo de crecimiento mejillón (Mytilus edulis) en la Ria de Vigo. Boletin de la Real Sociedad Espanola de Historia Natural. Seccion Biologica 58: 217–236.Google Scholar
  3. Beadman, H. A., M. J. Kaiser, M. Galanidi, R. Shucksmith & R. I. Willows, 2004. Changes in species richness with stocking density of marine bivalves. Journal of Applied Ecology 41: 464–475.CrossRefGoogle Scholar
  4. Clarke, T. A., 1978. Diel feeding patterns of 16 species of mesopelagic fishes from Hawaiian waters. Fishery Bulletin 76: 495–513.Google Scholar
  5. Coulthard, H. S., 1929. Growth of the sea mussel. Contributions to Canadian Biology and Fisheries 4: 123–136.Google Scholar
  6. Dame, R., N. Dankers, T. Prins, H. Jongsma & A. Smaal, 1991. The influence of mussel beds on nutrients in the Western Wadden Sea and Eastern Scheldt estuaries. Estuaries and Coasts 14: 130–138.CrossRefGoogle Scholar
  7. Davids, C., 1964. The influence of suspensions of microorganisms of different concentrations on the pumping and retention of food by the mussel Mytilus edulis L. Netherlands Journal of Sea Research 2: 233–249.CrossRefGoogle Scholar
  8. Dodgson, R. W., 1928. Report on mussel purification. Ministry of Agriculture and Fisheries, Fishery Investigations, London (Series II) 10(1): 1–498.Google Scholar
  9. Dolmer, P., 2000. Feeding activity of mussels Mytilus edulis related to near-bed currents and phytoplankton biomass. Journal of Sea Research 44: 221–231.CrossRefGoogle Scholar
  10. Garcia-March, J. R., M. Sanchís Solsona & A. M. García-Carrascosa, 2008. Shell gaping behaviour of Pinna nobilis L., 1758: circadian and circalunar rhythms revealed by in situ monitoring. Marine Biology 153: 689–698.CrossRefGoogle Scholar
  11. Gattermann, R., R. E. Johnston, N. Yigit, P. Fritzsche, S. Larimer, S. Özkurt, K. Neumann, Z. Song, E. Colak & J. Johnston, 2008. Golden hamsters are nocturnal in captivity but diurnal in nature. Biology Letters 4: 253–255.CrossRefPubMedGoogle Scholar
  12. Goss-Custard, J., 1996. The Oystercatcher: From Individuals to Populations. Oxford University Press, Oxford, UK.Google Scholar
  13. Green, J. A., P. J. Butler, A. J. Woakes, I. L. Boyd & R. L. Holder, 2001. Heart rate and rate of oxygen consumption of exercising macaroni penguins. Journal of Experimental Biology 204: 673–684.PubMedGoogle Scholar
  14. Green, J. A., L. G. Halsey, R. P. Wilson & P. B. Frappell, 2009. Estimating energy expenditure of animals using the accelerometry technique: activity, inactivity and comparison with the heart-rate technique. Journal of Experimental Biology 212: 471–482.CrossRefPubMedGoogle Scholar
  15. Hays, G. C., 2003. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503: 163–170.CrossRefGoogle Scholar
  16. Higgins, P. J., 1980. Effects of food availability on the value movements and feeding behaviour of juvenile Crassostrea virginica (Gmelin), 1. value movements and periodic activity. Journal of Experimental Marine Biology and Ecology 45: 229–244.CrossRefGoogle Scholar
  17. Horvath, G., G. Kriska, P. Malik & B. Robertson, 2009. Polarized light pollution: a new kind of ecological photopollution. Frontiers in Ecology and the Environment 7: 317–325.CrossRefGoogle Scholar
  18. Huntsman, A. G., 1921. The effect of light on growth in the mussel. Proceedings of the Royal Society of Canada 15: 23–28.Google Scholar
  19. Jorgensen, C. B., 1960. Efficiency of particle retention and rate of water transport in undisturbed lamellibranchs. ICES Journal of Marine Science 26: 94–116.CrossRefGoogle Scholar
  20. Longcore, T. & C. Rich, 2004. Ecological light pollution. Frontiers in Ecology and the Environment 2: 191–198.CrossRefGoogle Scholar
  21. Macdonald, B. A., S. M. C. Robinson & K. A. Barrington, 2009. Evaluating the use of exhalent siphon area in estimating feeding activity of blue mussels, Mytilus edulis. Journal of Shellfish Research 28: 289–297.CrossRefGoogle Scholar
  22. Maire, O., J. M. Amouroux, J. C. Duchene & A. Gremare, 2007. Relationship between filtration activity and food availability in the Mediterranean mussel Mytilus galloprovincialis. Marine Biology 152: 1293–1307.CrossRefGoogle Scholar
  23. Martella, T., 1974. Some factors influencing byssus thread production in Mytilus edulis (mollusca: Bivalvia) Linnaeus, 1758. Water, Air and Soil Pollution 3: 171–177.Google Scholar
  24. Morton, B., 2001. The evolution of eyes in the Bivalvia. Oceanography and Marine Biology: An Annual Review 39: 165–205.Google Scholar
  25. Newell, C. R., C. H. Pilskaln, S. M. Robinson & B. A. MacDonald, 2005. The contribution of marine snow to the particle food supply of the benthic suspension feeder Mytilus edulis. Journal of Experimental Marine Biology and Ecology 321: 109–124.CrossRefGoogle Scholar
  26. Nielsen, M. V. & T. Strömgren, 1985. The effect of light on the shell length and defecation rate of Mytilus edulis (L). Aquaculture 47: 205–211.CrossRefGoogle Scholar
  27. Norton-Griffiths, M., 1967. Some ecological aspects of the feeding behaviour of the oystercatcher Haematopus ostralegus on the edible mussel Mytilus edulis. Ibis 109: 412–424.CrossRefGoogle Scholar
  28. Rao, K. P., 1954. Tidal rhythmicity of rate of water propulsion in Mytilus, and its modifiability by transplantation. Biological Bulletin 106: 353–359.CrossRefGoogle Scholar
  29. Robson, A. A., 2008. Gaping at Environmental Variability: How do Bivalves React to Changing Circumstance? Swansea University, UK: 248 pp.Google Scholar
  30. Robson, A., R. Wilson & C. Garcia de Leaniz, 2007. Mussels flexing their muscles: a new method for quantifying bivalve behaviour. Marine Biology 151: 1195–1204.CrossRefGoogle Scholar
  31. Robson, A. A., G. R. Thomas, C. Garcia de Leaniz & R. P. Wilson, 2009. Valve gape and exhalant pumping in bivalves: optimization of measurement. Aquatic Biology 6: 191–200.CrossRefGoogle Scholar
  32. Robson, A. A., C. Garcia de Leaniz, R. P. Wilson & L. G. Halsey, 2010. Behavioural adaptations of mussels to varying levels of food availability and predation risk. Journal of Molluscan Studies. doi: 10.1093/mollus/eyq025.
  33. Ropert-Coudert, Y. & R. P. Wilson, 2004. Subjectivity in bio-logging science: do logged data mislead? Memoirs of National Institute of Polar Research Special Issue 58: 23–33.Google Scholar
  34. Saurel, C., J. C. Gascoigne, M. R. Palmer & M. J. Kaiser, 2007. In situ mussel feeding behavior in relation to multiple environmental factors: regulation through food concentration and tidal conditions. Limnology and Oceanography 52: 1919–1929.Google Scholar
  35. Seed, R., 1969. The ecology of Mytilus edulis L. (Lamellibranchiata) on exposed rocky shores. II. Growth and mortality. Oecologia 3: 317–350.CrossRefGoogle Scholar
  36. Seed, R., 1976. Ecology of marine mussels. In Bayne, B. L. (ed.), Marine Mussels: Their Ecology and Physiology. Cambridge University Press, Cambridge: 13–65.Google Scholar
  37. Stillman, R. A., J. D. Goss-Custard, A. D. West, S. E. A. Le, V. Dit Durell, R. W. G. Caldow, S. McGrorty & R. T. Clarke, 2000. Predicting mortality in novel environments: tests and sensitivity of a behaviour-based model. Journal of Applied Ecology 37: 564–588.CrossRefGoogle Scholar
  38. Strömgren, T., 1976a. Length growth of Mytilus edulis (Bivalvia) in relation to photoperiod, irradiance and spectral distribution of light. Sarsia 61: 31–40.Google Scholar
  39. Strömgren, T., 1976b. Growth patterns of Mytilus edulis in relation to individual variation, light conditions, feeding and starvation. Sarsia 60: 25–39.Google Scholar
  40. Sutherland, W. J. & B. J. Ens, 1987. The criteria determining the selection of mussels Mytilus edulis by oystercatchers Haematopus ostralegus. Behaviour 103: 187–202.CrossRefGoogle Scholar
  41. Theede, H., 1963. Experimentelle Untersuchungen über die Filtrierleistung der Miesmuschel Mytilus edulis L. Kieler Meeresforsch 19: 20–41.Google Scholar
  42. Trevelyan, G. A. & E. S. Chang, 1987. Light-induced shell pigmentation in post-larval Mytilus edulis and its use as a biological tag. Marine Ecology Progress Series 39: 137–144.CrossRefGoogle Scholar
  43. Williams, B. G. & C. A. Pilditch, 1997. The entrainment of persistent tidal rhythmicity in a filter-feeding bivalve using cycles of food availability. Journal of Biological Rhythms 12: 173–181.CrossRefPubMedGoogle Scholar
  44. Wilson, R. P., K. Puetz, C. A. Bost, B. M. Culik, R. Bannasch, T. Reins & D. Adelung, 1993. Diel dive depth in penguins in relation to diel vertical migration of prey: whose dinner by candlelight? Marine Ecology Progress Series 94: 101–104.CrossRefGoogle Scholar
  45. Wilson, R., P. Reuter & M. Wahl, 2005. Muscling in on mussels: new insights into bivalve behaviour using vertebrate remote-sensing technology. Marine Biology 147: 1165–1172.CrossRefGoogle Scholar
  46. Winter, J. E., 1969. Über den Einfluß der Nahrungskonzentration und anderer Faktoren auf Filtrierleistung und Nahrungsausnutzung der Muscheln Arctica islandica und Modiolus modiolus. Marine Biology 4: 87–135.CrossRefGoogle Scholar
  47. Winter, J. E., 1973. The filtration rate of Mytilus edulis and its dependence on algal concentration, measured by a continuous automatic recording apparatus. Marine Biology 22: 317–328.CrossRefGoogle Scholar
  48. Zar, J. H., 1984. Biostatistical Analysis, 2nd ed. Prentice Hall, Inc, Englewood Cliffs, NJ.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Anthony A. Robson
    • 1
  • Carlos Garcia de Leaniz
    • 2
  • Rory P. Wilson
    • 2
  • Lewis G. Halsey
    • 3
  1. 1.Laboratoire des Sciences de L’Environnement Marin (UMR CNRS 6539), Institut Universitaire Européen de la MerUniversité de Bretagne OccidentalePlouzanéFrance
  2. 2.Department of Pure and Applied Ecology, Institute of Environmental Sustainability, School of the Environment and SocietySwansea UniversitySwanseaUK
  3. 3.School of Human and Life SciencesRoehampton UniversityLondonUK

Personalised recommendations