, Volume 655, Issue 1, pp 159–169 | Cite as

Evaluating short-term effects of omnivorous fish removal on water quality and zooplankton at a subtropical lake

  • M. J. CatalanoEmail author
  • M. S. Allen
  • M. H. Schaus
  • D. G. Buck
  • J. R. Beaver
Primary research paper


We evaluated a biomanipulation program to test for short-term changes in water quality (chlorophyll a, Secchi depth, total phosphorus) and macrozooplankton biomass following partial removal of omnivorous gizzard shad Dorosoma cepedianum. The removal occurred at a eutrophic subtropical lake, and responses were compared to an unmanipulated control lake using a before-after-control-impact paired series analysis. The removal reduced the biomass of large (>300 mm) gizzard shad by 75% over 2 years via a subsidized commercial gill net fishery. However, the total population biomass of gizzard shad was reduced by approximately 32% from an average pre-manipulation biomass of 224 kg ha−1 due to the size selectivity of the gear, which did not effectively capture small fish (<300 mm). No significant short-term changes in chlorophyll a concentration, Secchi depth, total phosphorus concentration or macrozooplankton biomass were detected following biomanipulation. The partial removal may have fallen short of the biomass reduction required to cause ecosystem responses. Our results suggest that moderate omnivore removals (i.e., <40% biomass reduction) will have little short-term benefits to these lakes, and future manipulations should use a less size-selective gear to achieve a larger total biomass reduction.


Gizzard shad Nutrient cycling Omnivory BACI analysis Water quality Subtropical lakes 



Many thanks to B. Baker, C. Barrientos, G. Binion, A. Bunch, M. Bunch, J. Dotson, P. Hall, G. Kaufman, E. Thompson, and A. Watts for assistance with sample collection and taxonomic identification of zooplankton. Walt Godwin and Brian Sparks of the SJRWMD were helpful with planning logistics for field work and providing portions of the data set presented here. The authors are grateful to the SJRWMD staff and two anonymous reviewers for helpful comments on drafts of the manuscript. M. Catalano was supported by a University of Florida Alumni Doctoral Fellowship. The research presented here was funded in part by the St. John’s River Water Management District, Palatka, Florida.


  1. Allen, M. S., M. V. Hoyer & D. E. Canfield Jr., 2000. Factors related to gizzard shad and threadfin shad occurrence and abundance in Florida lakes. Journal of Fish Biology 57: 291–302.Google Scholar
  2. Bachmann, R. W., B. L. Jones, D. D. Fox, M. Hoyer, L. A. Bull & D. E. Canfield Jr., 1996. Relations between trophic state indicators and fish in Florida (USA) lakes. Canadian Journal of Fisheries and Aquatic Sciences 53: 842–855.CrossRefGoogle Scholar
  3. Beaver, J. R. & K. E. Havens, 1996. Seasonal and spatial variation in zooplankton community structure and their relation to possible controlling variables in Lake Okeechobee. Freshwater Biology 36: 45–56.CrossRefGoogle Scholar
  4. Benndorf, J., 1997. Possibilities and limits for controlling eutrophication by biomanipulation. International Review of Hydrobiology 80: 519–534.Google Scholar
  5. Blancher, E. C., 1984. Zooplankton-trophic state relationships in some north and central Florida lakes. Hydrobiologia 109: 251–263.CrossRefGoogle Scholar
  6. Brown, C. D., D. E. Canfield Jr., R. W. Bachmann & M. V. Hoyer, 1999. Evaluation of surface sampling for estimates of chlorophyll, total phosphorus, and total nitrogen concentrations in shallow Florida lakes. Journal of Lake and Reservoir Management 15: 121–132.CrossRefGoogle Scholar
  7. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. von Ende, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.CrossRefGoogle Scholar
  8. Catalano, M. J. & M. J. Allen, 2009. Assessing Effects of Gizzard Shad Removal on Gizzard Shad Population Dynamics in Florida Lakes. Final Report to the St. Johns River Water Management District: Contract #SI40613. University of Florida, Gainesville, FL.Google Scholar
  9. Catalano, M. J. & M. S. Allen, 2010. A size- and age-structured model to estimate fish recruitment, growth, mortality, and gear selectivity. Fisheries Research 105: 38–45.CrossRefGoogle Scholar
  10. Cohen, J., 1988. Statistical Power Analysis for the Behavioral Sciences. Erlbaum Associates, Hillsdale, NJ.Google Scholar
  11. Coveney, M. F., E. F. Lowe, L. E. Battoe, E. R. Marzolf & R. Conrow, 2005. Response of a eutrophic, shallow subtropical lake to reduced nutrient loading. Freshwater Biology 50: 1718–1730.CrossRefGoogle Scholar
  12. Culver, D. A., M. M. Boucherle, D. J. Bean & J. W. Fletcher, 1985. Biomass of freshwater crustacean zooplankton from length–weight regressions. Canadian Journal of Fisheries and Aquatic Sciences 42: 1380–1390.CrossRefGoogle Scholar
  13. DeMelo, R., R. France & D. J. McQueen, 1992. Biomanipulation: hit or myth. Limnology and Oceanography 37: 192–207.CrossRefGoogle Scholar
  14. Dettmers, J. M. & R. A. Stein, 1992. Food consumption by larval gizzard shad: zooplankton effects and implications for reservoir communities. Transactions of the American Fisheries Society 121: 494–507.CrossRefGoogle Scholar
  15. Dettmers, J. M. & R. A. Stein, 1996. Quantifying linkages among gizzard shad, zooplankton, and phytoplankton in reservoirs. Transactions of the American Fisheries Society 125: 27–41.CrossRefGoogle Scholar
  16. DeVries, D. R. & R. A. Stein, 1992. Complex interactions between fish and zooplankton: quantifying the role of an open-water planktivore. Canadian Journal of Fisheries and Aquatic Sciences 49: 1216–1227.CrossRefGoogle Scholar
  17. Domine, L. M., M. J. Vanni & W. H. Renwick, 2010. New and regenerated primary production in a productive reservoir ecosystem. Canadian Journal of Fisheries and Aquatic Sciences 67: 278–287.CrossRefGoogle Scholar
  18. Drenner, R. W. & K. D. Hambright, 1999. Review: biomanipulation of fish assemblages as a lake restoration technique. Archiv für Hydrobiologie 146: 129–165.Google Scholar
  19. Elmore, J. L., B. C. Cowell & D. S. Vodopich, 1984. Biological communities of three subtropical Florida lakes of different trophic character. Archiv für Hydrobiologie 100: 455–478.Google Scholar
  20. FDEP, 2004. Standard Operating Procedures for Laboratory Activities. DEP-SOP-002/01, Tallahassee, FL.Google Scholar
  21. Fulton, R. S. I. & D. Smith, 2008. Development of phosphorus load reduction goals for seven lakes in the Upper Ocklawaha River Basin, Florida. Lake and Reservoir Management 24: 139–154.CrossRefGoogle Scholar
  22. Galanti, G., P. Guilizzoni & V. Libera, 1990. Biomanipulation of Lago di Candia (Northern Italy): a three-year experience of aquatic macrophyte management. Hydrobiologia 200(201): 409–417.CrossRefGoogle Scholar
  23. Gido, K. B., 2002. Interspecific comparisons and the potential importance of nutrient excretion by benthic fishes in a large reservoir. Transactions of the American Fisheries Society 131: 260–270.CrossRefGoogle Scholar
  24. Hansson, L.-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P.-A. Nilsson, M. Søndergaard & J. Strand, 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems 1: 558–574.CrossRefGoogle Scholar
  25. Havens, K. E. & J. R. Beaver, 2010. Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia. doi: 10.1007/s10750-010-0386-5.Google Scholar
  26. Havens, K. E., T. L. East & J. R. Beaver, 1996. Experimental studies of zooplankton–phytoplankton–nutrient interactions in a large subtropical lake (Lake Okeechobee, Florida, USA). Freshwater Biology 36: 579–597.CrossRefGoogle Scholar
  27. Higgins, K. A., M. J. Vanni & M. J. González, 2006. Detritivory and the stoichiometry of nutrient cycling by a dominant fish species in lakes of varying productivity. Oikos 114: 419–430.CrossRefGoogle Scholar
  28. Horppila, J., H. Peltonen, T. Malinen, E. Luokkanen & T. Kairesalo, 1998. Top-down or bottom-up effects by fish: issues of concern in biomanipulation of lakes. Restoration Ecology 6: 20–28.CrossRefGoogle Scholar
  29. Jeppesen, E., M. Sondergaard, N. Mazzeo, M. Meerhoff, C. C. Branco, V. Huszar & F. Scasso, 2005. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. In Reddy, M. V. (ed.), Tropical Eutrophic Lakes: Their Restoration and Management. Science Publishers, Enfield, New Hampshire: 331–349.Google Scholar
  30. Kim, G. W. & D. R. DeVries, 2000. Effects of a selectively reduced gizzard shad population on trophic interactions and age-0 fishes in Walker County Lake, Alabama. North American Journal of Fisheries Management 20: 860–872.CrossRefGoogle Scholar
  31. McCauley, E., 1984. The estimation of abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific, Oxford: 228–265.Google Scholar
  32. Meijer, M.-L., I. de Bois, M. Scheffer, R. Portielje & H. Hosper, 1999. Biomanipulation in shallow lakes in the Netherlands: an evaluation of 18 case studies. Hydrobiologia 408(409): 13–30.CrossRefGoogle Scholar
  33. Schaus, M. H., 2007. Effects of Biomanipulation on Nutrient Cycles in Central Florida Lakes via Nutrient Excretion and Bioturbation by Gizzard Shad. Project #SK933AA, Final Report. St. Johns River Water Management District, Palatka, FL.Google Scholar
  34. Schaus, M. H., M. J. Vanni, T. E. Wissing, M. T. Bremigan, J. E. Garvey & R. A. Stein, 1997. Nitrogen and phosphorus excretion by detritivorous gizzard shad in a reservoir ecosystem. Limnology and Oceanography 42: 1386–1397.CrossRefGoogle Scholar
  35. Schaus, M. H., M. J. Vanni & T. E. Wissing, 2002. Biomass-dependent diet shifts in omnivorous gizzard shad: implications for growth, food web, and ecosystem effects. Transactions of the American Fisheries Society 131: 40–54.CrossRefGoogle Scholar
  36. Schaus, M. H., W. W. Morris & A. Ford, 2010a. Quantifying the Role of an Omnivorous Fish in Central Florida Lakes: Diet Analyses and Simulation Modeling. Project #25244, Final Report. St. Johns River Water Management District, Palatka, FL.Google Scholar
  37. Schaus, M. H., W. Godwin, L. Battoe, M. Coveney, E. Lowe, R. Roth, C. Selecky, M. Vindigni, C. Weinberg & A. Zimmerman, 2010b. Impact of the removal of Gizzard Shad (Dorosoma cepedianum) on nutrient cycles in Lake Apopka, Florida. Freshwater Biology. doi: 10.1111/j.1365-2427.2010.02440.x.
  38. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.CrossRefGoogle Scholar
  39. Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwater Biology 14: 371–383.CrossRefGoogle Scholar
  40. Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: an ecosystem approach to lake restoration. In Brezonik, P. L. & J. L. Fox (eds), Proceedings of a Symposium on Water Quality Management through Biological Control. University of Florida, Gainesville, FL: 85–86.Google Scholar
  41. Søndergaard, M., L. Liboriussen, A. R. Pedersen & E. Jeppesen, 2008. Lake restoration by fish removal: short- and long-term effects in 36 Danish lakes. Ecosystems 11: 1291–1305.CrossRefGoogle Scholar
  42. Starling, F., X. Lazzaro, C. Cavalcanti & R. Moriera, 2002. Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence from a fish kill. Freshwater Biology 47: 2443–2452.CrossRefGoogle Scholar
  43. Stein, R. A., D. R. DeVries & J. M. Dettmers, 1995. Food-web regulation by a planktivore: exploring the generality of the trophic cascade hypothesis. Canadian Journal of Fisheries and Aquatic Sciences 52: 2518–2526.CrossRefGoogle Scholar
  44. Stewart-Oaten, A., W. W. Murdoch & K. R. Parker, 1986. Environmental impact assessment: “pseudoreplication” in time? Ecology 67: 929–940.CrossRefGoogle Scholar
  45. Tugend, K. I. & M. S. Allen, 2000. Temporal dynamics of zooplankton community composition and mean size at Lake Wauberg, Florida. Florida Scientist 63: 142–154.Google Scholar
  46. Van Den Avyle, M. J. & R. S. Hayward, 1999. Dynamics of exploited fish populations. In Kohler, C. C. & W. A. Hubert (eds), Inland Fisheries Management in North America. American Fisheries Society, Bethesda, MD: 127–166.Google Scholar
  47. Vanni, M. J., 1995. Nutrient transport and recycling by consumers in lake food webs: implications for algal communities. In Polis, G. A. & K. O. Winemiller (eds), Food Webs: Integration of Patterns and Dynamics. Chapman and Hall, New York: 81–95.Google Scholar
  48. Vanni, M. J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics 33: 341–370.CrossRefGoogle Scholar
  49. Vanni, M. J., A. M. Bowling, E. M. Dickman, R. S. Hale, K. A. Higgins, M. J. Horgan, L. B. Knoll, W. H. Renwick & R. A. Stein, 2006. Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology 87: 1696–1709.CrossRefPubMedGoogle Scholar
  50. Yako, L. A., J. M. Dettmers & R. A. Stein, 1996. Feeding preferences of omnivorous gizzard shad as influenced by fish size and zooplankton density. Transactions of the American Fisheries Society 125: 753–759.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. J. Catalano
    • 1
    • 5
    Email author
  • M. S. Allen
    • 1
  • M. H. Schaus
    • 2
  • D. G. Buck
    • 3
  • J. R. Beaver
    • 4
  1. 1.School of Forest Resources and Conservation, Program for Fisheries and Aquatic SciencesUniversity of FloridaGainesvilleUSA
  2. 2.Department of BiologyVirginia Wesleyan CollegeNorfolk/Virginia BeachUSA
  3. 3.School of Natural Resources and EnvironmentUniversity of FloridaGainesvilleUSA
  4. 4.BSA Environmental Services, Inc.BeachwoodUSA
  5. 5.Quantitative Fisheries CenterMichigan State UniversityEast LansingUSA

Personalised recommendations