, Volume 660, Issue 1, pp 105–115

Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs



We analysed phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth on the basis of published data from 54 lakes and reservoirs in different climate regions around the world. Our analysis demonstrated that reservoirs and lakes that received higher areal loading of phosphorus (TPin) also retained more P per m2 but the proportion of the external P loading retained in the waterbody (retention coefficient, RP) remained generally independent of TPin. The waterbodies with longer hydraulic residence times (TR) retained larger proportions of external P and the correlation between RP and TR was much stronger in lakes with areas larger than 25 km2 than in the whole data set. TPin and TR together determined 78% of the variation in RP in large lakes. We also partially confirmed our hypothesis that waterbodies with bigger relative depths (ZR) retain more of the external phosphorus than larger and shallower waterbodies with lower ZR. The hypothesis was, however, validated only for lakes larger than 25 km2 and for those with TR <0.3 year, where RP increased significantly with increasing ZR. In stratified lakes, increasing relative depth correlated with reduced P retention capacity, demonstrating the complex nature of phosphorus biogeochemistry in lake ecosystems.


Phosphorus retention Phosphorus mass balance Lake morphometry Relative depth 


  1. Alaoui Mhamdi, B., A. Azzouzi, M. Alaoui Mhamdi & T. Sime-Ngando, 2007. Dynamics of the relative nitrogen and phosphorus concentrations in a reservoir situated in a semi-arid zone (Sahela, Morocco). Water Resources Management 21: 983–995.CrossRefGoogle Scholar
  2. Anderson, N. J., E. Jeppesen & M. Søndergaard, 2005. Ecological effects of reduced nutrient loading (oligotrophication) on lakes: an introduction. Freshwater Biology 50: 1589–1593.CrossRefGoogle Scholar
  3. Beklioglu, M., L. Carvalho & B. Moss, 1999. Rapid recovery of a shallow hypertrophic lake following sewage effluent diversion: lack of chemical resilience. Hydrobiologia 412: 5–15.CrossRefGoogle Scholar
  4. Bertahasa, I., E. Dimitrioua, I. Karaouzasa, S. Laschoua & I. Zachariasb, 2006. Climate change and agricultural pollution effects on the trophic status of a Mediterranean lake. Acta Hydrochimica et Hydrobiologica 34: 349–359.CrossRefGoogle Scholar
  5. Brett, M. T. & M. M. Bejamin, 2008. A review and reassessment of lake phosphorus retention and the nutrient loading concept. Freshwater Biology 53: 194–211.Google Scholar
  6. Brigault, R. & V. Ruban, 1998. External phosphorus load estimates and P-budget for the hydroelectric reservoir of Bort-Les-Orgues, France. Water, Air and Soil Pollution 119: 91–103.CrossRefGoogle Scholar
  7. Burger, D. F., D. P. Hamilton, C. A. Pilditch & M. M. Gibbs, 2007. Benthic nutrient fluxes in a eutrophic, polymictic lake. Hydrobiologia 584: 13–25.CrossRefGoogle Scholar
  8. Callender, E. & L. Granina, 1997. Biogeochemical phosphorus mass balance for Lake Baikal, southeastern Siberia, Russia. Marine Geology 139: 5–19.CrossRefGoogle Scholar
  9. Canfield, D. E., R. W. Bachmann & M. V. Hoyer, 2000. A management alternative for Lake Apopka. Lake and Reservoir Management 16(3): 205–221.CrossRefGoogle Scholar
  10. Carpenter, S. & D. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.CrossRefGoogle Scholar
  11. Coveney, M. F., E. F. Lowe, L. E. Battoe, E. R. Marzolf & R. Conrow, 2005. Response of a eutrophic, shallow subtropical lake to reduce nutrient loading. Freshwater Biology 50: 1718–1730.CrossRefGoogle Scholar
  12. de Anda, J., H. Shear, U. Maniak & G. Riedel, 2001. Phosphates in Lake Chapala, Mexico. Lakes & Reservoirs: Research and Management 6: 313–321.CrossRefGoogle Scholar
  13. Dillon, P. J., 1975. The phosphorus budget of Cameron Lake. Ontario: the importance of flushing rate to the degree of eutrophy of lakes. Limnology and Oceanography 20(1): 28–39.CrossRefGoogle Scholar
  14. Dillon, P. J. & F. H. Rigler, 1974. A test of a simple nutrient budget model predicting the phosphorus concentration in lake water. Journal of the Fisheries Research Board of Canada 31: 1771–1778.Google Scholar
  15. Dodds, W. K., 2003. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology 39: 840–849.CrossRefGoogle Scholar
  16. Doyle, G. A. & D. D. Runnels, 1997. Physical limnology of existing pit lakes. Mining Engineering 49(12): 76–80.Google Scholar
  17. Driscoll, C. T., S. W. Effler, M. T. Auer, S. M. Doerr & M. R. Penn, 1993. Supply of phosphorus to the water column of a productive hardwater lake—controlling mechanisms and management considerations. Hydrobiologia 253: 61–72.CrossRefGoogle Scholar
  18. Dunalska, J., 2002. Influence of limited water flow in a pipeline on the nutrients budget in a lake restored by hypolimnetic withdrawal method. Polish Journal of Environmental Studies 11(6): 631–637.Google Scholar
  19. Duras, J. & J. Hejzlar, 2001. The effect of outflow depth on phosphorus retention in a small, hypertrophic temperate reservoir with short hydraulic residence time. International Review of Hydrobiology 86(6): 585–601.CrossRefGoogle Scholar
  20. Ekholm, P., O. Malve & T. Kirkkala, 1997. Internal and external loading as regulators of nutrient concentrations in the agriculturally loaded Lake Pyhäjärvi (southwest Finland). Hydrobiologia 345: 3–14.CrossRefGoogle Scholar
  21. Engelhardt, K. A. M. & M. E. Ritchie, 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411: 687–689.CrossRefPubMedGoogle Scholar
  22. European Union, 2000. Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Policy. European Commission. Official Journal of the European Communities L327/1.Google Scholar
  23. Gächter, R. & B. Müller, 2003. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnology and Oceanography 48(2): 929–933.CrossRefGoogle Scholar
  24. Garnier, J., B. Leporcq & N. Sanchez-Philippon, 1999. Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemistry 47: 119–146.Google Scholar
  25. Gibson, C. E., G. Wang, R. H. Foy & S. D. Lennox, 2001. The importance of catchment and lake processes in the phosphorus budget of a large lake. Chemosphere 42: 215–220.CrossRefPubMedGoogle Scholar
  26. Ginés, O. R., 1998. Total phosphorus and total nitrogen mass balances for Lago de Cidra, central Puerto Rico. American Water Resources Association. Proceedings from Third International Symposium on Tropical Hydrology, San Juan, Puerto Rico, July 12–16, 1998.Google Scholar
  27. Gliwicz, Z. M., 1979. Metalimnetic gradients and trophic state of lake epilimnia. Memorie dell’Istituto Italiano di Idrobiologia 37: 121–143.Google Scholar
  28. Guy, M., W. D. Taylor & J. C. H. Carter, 1994. Decline in total phosphorus in the surface waters of lakes during summer stratification, and its relationship to size distribution of particles and sedimentation. Canadian Journal of Fisheries and Aquatic Sciences 51: 1330–1337.CrossRefGoogle Scholar
  29. Håkanson, L., 2004. Lakes—form and function. The Blackburn Press, New Jersey.Google Scholar
  30. Håkanson, L., 2005. The importance of Lake morphometry for the structure and function of lakes. International Review of Hydrobiology 90(4): 433–461.CrossRefGoogle Scholar
  31. Hamilton, D., M. Hamilton & C. McBride, 2006. Nutrient and Water Budget for Lake Tarawera. CBER Contract Report 46. Centre for Biodiversity and Ecology Research, Department of Biological Sciences, The University of Waikato, Hamilton.Google Scholar
  32. Hansson, L., C. Brönmark, N. P. Andersm & K. Åbjörnsson, 2005. Conflicting demands on wetland ecosystem services: nutrient retention, biodiversity or both? Freshwater Biology 50(4): 705–714.CrossRefGoogle Scholar
  33. Hart, B. T., W. van Dok & N. Djuangsih, 2002. Nutrient budget for Saguling Reservoir, West Java, Indonesia. Water Research 36: 2152–2160.CrossRefPubMedGoogle Scholar
  34. Havens, K. E. & C. L. Schelske, 2001. The importance of considering biological processes when setting total maximum daily loads (TMDL) for phosphorus in shallow lakes and reservoirs. Environmental Pollution 113: 1–9.CrossRefPubMedGoogle Scholar
  35. Havens, K. E., T. Fukushima, P. Xie, T. Iwakuma, R. T. James, N. Takamura, T. Hanazato & T. Yamamoto, 2001. Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee (USA). Environmental Pollution 111: 263–272.CrossRefPubMedGoogle Scholar
  36. Hejzlar, J., K. Samalova, P. Boers & B. Kronvang, 2006. Modelling phosphorus retention in lakes and reservoirs. Water Air and Soil Pollution: Focus 6(5–6): 487–494.Google Scholar
  37. House, W. A., H. Casey, L. Donaldson & S. Smith, 1986. Factors affecting the coprecipitation of inorganic phosphate with calcite in hardwaters—I, laboratory studies. Water Research 20: 917–922.CrossRefGoogle Scholar
  38. Hupfer, M. & J. Lewandowski, 2008. Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. International Review of Hydrobiology 93(4–5): 415–432.CrossRefGoogle Scholar
  39. James, W. F. & J. W. Barko, 1997. Net and gross sedimentation in relation to the phosphorus budget of Eau Galle Reservoir, Wisconsin. Hydrobiologia 345: 15–20.CrossRefGoogle Scholar
  40. Kelderman, P., Z. Wei & M. Maessen, 2005. Water and mass budgets for estimating phosphorus sediment–water exchange in Lake Taihu (China P. R.). Hydrobiologia 544: 167–175.CrossRefGoogle Scholar
  41. Kilinc, S. & B. Moss, 2002. Whitemere, a lake that defies some conventions about nutrients. Freshwater Biology 47: 207–218.CrossRefGoogle Scholar
  42. Kirchner, W. B. & P. J. Dillon, 1975. Empirical method of estimating retention of phosphorus in lakes. Water Resources Research 11: 182–183.CrossRefGoogle Scholar
  43. Knuuttila, S., O. P. Pietiläinen & L. Kauppi, 1994. Nutrient balances and phytoplankton dynamics in two agriculturally loaded shallow lakes. Hydrobiologia 275(276): 359–369.CrossRefGoogle Scholar
  44. Köhler, J., S. Hilt, R. Adrian, A. Nicklisch, H. P. Kozerski & N. Walz, 2005. Long-term responses of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading. Freshwater Biology 50: 1639–1650.CrossRefGoogle Scholar
  45. Kottek, M., J. Grieser, C. Beck, B. Rudolf & F. Rubel, 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15(3): 259–263.CrossRefGoogle Scholar
  46. Krogerus, K. & P. Ekholm, 2003. Phosphorus in settling matter and bottom sediments in lakes loaded by agriculture. Hydrobiologia 429: 15–28.CrossRefGoogle Scholar
  47. Kvarnäs, H., 2001. Morphometry and hydrology of the four large lakes of Sweden. Ambio 30(8): 467–474.PubMedGoogle Scholar
  48. LaBaugh, J. W. & T. C. Winter, 1984. The impact of uncertainties in hydrologic measurement on phosphorus budgets and empirical models for two Colorado reservoirs. Limnology and Oceanography 29(2): 322–339.CrossRefGoogle Scholar
  49. Lang, G. A., J. A. Morton & T. D. Fontaine, 1988. Total phosphorus budget for lake St. Clair: 1975–1980. Journal of Great Lakes Research 14(3): 257–266.CrossRefGoogle Scholar
  50. Miranda, S. A. & B. Matvienko, 2003. Rain and groundwater as phosphorus sources of a small reservoir. Lakes & Reservoirs: Research and Management 8: 27–30.CrossRefGoogle Scholar
  51. Moosmann, L., R. Gächter, B. Müller & A. Wüest, 2006. Is phosphorus retention in autochthonous lake sediments controlled by oxygen or phosphorus? Limnology and Oceanography 51(1): 763–771.CrossRefGoogle Scholar
  52. Müller, B., D. Finger, M. Sturm, V. Prasuhn, T. Haltmeir, P. Bossard, C. Hoyle & A. Wüest, 2007. Present and past bio-available phosphorus budget in the ultra-oligotrophic Lake Brienz. Aquatic Science 69: 227–239.CrossRefGoogle Scholar
  53. Nixdorf, B. & R. Deneke, 1997. Why ‘very shallow’ lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342/343: 269–284.CrossRefGoogle Scholar
  54. Nõges, P., 2005. Water and nutrient mass balance of the partly meromictic temperate Lake Verevi. Hydrobiologia 547: 21–31.CrossRefGoogle Scholar
  55. Nõges, P., A. Järvet, L. Tuvikene & T. Nõges, 1998. The budgets of nitrogen and phosphorus in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia 363: 219–227.Google Scholar
  56. Nõges, P., Ü. Leisk, E. Loigu, A. Reihan, B. Skakalski & T. Nõges, 2003. Nutrient budget of Lake Peipsi in 1998. Proceedings of the Estonian Academy of Sciences: Biology, Ecology 52(4): 407–422.Google Scholar
  57. Nõges, T., A. Järvet, A. Kisand, R. Laugaste, E. Loigu, B. Skakalski & P. Nõges, 2007. Reaction of large and shallow lakes Peipsi and Võrtsjärv to the changes of nutrient loading. Hydrobiologia 584: 253–264.CrossRefGoogle Scholar
  58. Nürnberg, G. K., 1984. The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnology and Oceanography 29(l): 111–124.CrossRefGoogle Scholar
  59. Nürnberg, G. K., 1994. Phosphorus release from anoxic sediments. What we know and how we can deal with it? Limnetica 10: 1–4.Google Scholar
  60. Ojanen, T., 1979. Phosphorus and nitrogen balance of the eutrophic Lake Tuusulanjärvi. Publications of the Water Research Institute, National Board of Waters, Finland 34: 74–87.Google Scholar
  61. Ott, I., T. Kõiv, P. Nõges, A. Kisand, A. Järvalt & E. Kirt, 2005. General description of partly meromictic hypertrophic Lake Verevi, its ecological status, changes during the past eight decades and restoration problems. Hydrobiologia 547: 1–20.CrossRefGoogle Scholar
  62. Peters, R. H., 1986. The role of prediction in limnology. Limnology and Oceanography 31: 1143–1159.CrossRefGoogle Scholar
  63. Pulatsü, S., 2003. The application of a phosphorus budget model estimating the carrying capacity of Kesikköprü dam lake. Turkish Journal of Veterinary and Animal Sciences 27: 1127–1130.Google Scholar
  64. Raftis, R., D. L. Pascual, G. Filippelli, L. P. Tedesco & M. Gray, 2005. Phosphorus Mass Balance of an Urban Eutrophied Drinking Water Reservoir: Eagle Creek Reservoir, Indianapolis, Indiana. Geological Society of America Annual Meeting, 2005 Salt Lake City, Utah, October 16–19, 2005, Paper no. 156-17.Google Scholar
  65. Ramm, K. & V. Scheps, 1997. Phosphorus balance of a polytrophic shallow lake with the consideration of phosphorus release. Hydrobiologia 342–343: 43–53.CrossRefGoogle Scholar
  66. Rooney, N., J. Kalff & C. Habel, 2003. The role of submerged macrophyte beds in phosphorus and sediment accumulation in Lake Memphremagog, Quebec, Canada. Limnology and Oceanography 48(5): 1927–1937.CrossRefGoogle Scholar
  67. Sas, H., 1989. Lake restoration by reduction of nutrient loading. Expectation, experience, extrapolation. Academia Verlag Richarz, St. Augustin, Germany.Google Scholar
  68. Schernewski, G., 2003. Nutrient budgets, dynamics and storm effects in a eutrophic, stratified Baltic Lake. Acta Hydrochimica et Hydrobiologica 31(2): 152–161.CrossRefGoogle Scholar
  69. Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.CrossRefPubMedGoogle Scholar
  70. Schulz, M. & J. Köhler, 2006. A simple model of phosphorus retention evoked by submerged macrophytes in lowland rivers. Hydrobiologia 563: 521–525.CrossRefGoogle Scholar
  71. Solim, S. U. & A. Wanganeo, 2008. Excessive phosphorus loading to Dal Lake. India: implications for managing shallow eutrophic lakes in urbanized watersheds. International Review of Hydrobiology 93(2): 148–166.CrossRefGoogle Scholar
  72. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2001. Retention and internal loading of phosphorus in shallow, eutrophic lakes. TheScientificWorldJournal 1: 427–442.CrossRefPubMedGoogle Scholar
  73. StatSoft, Inc., 2007. STATISTICA (data analysis software system), Version 8.0. www.statsoft.com.
  74. Straškraba, M. I., I. Dostalkova, J. Hejzlar & V. Vyhnalek, 1995. The effect of reservoirs on phosphorus concentration. Internationale Revue der gesamten Hydrobiologie und Hydrographie 80: 403–413.CrossRefGoogle Scholar
  75. Talling, J. F. & J. E. Parker, 2002. Seasonal dynamics of phytoplankton and phytobenthos and associated chemical interactions in a shallow upland lake (Malham Tarn, northern England). Hydrobiologia 487: 167–181.CrossRefGoogle Scholar
  76. Tarasova, E. N. & A. I. Mescheryakova, 1992. Modern state of hydrochemical regime of Lake Baikal [in Russian]. Nauka, Novosibirsk.Google Scholar
  77. Tyler, P. A. & W. G. Vyverman, 1995. The microbial market place—trade-offs at the chemocline of meromictic lakes. In Round, F. E. & D. J. Chapman (eds.), Progress in Phycological Research, Vol. 11. Biopress Ltd, Bristol: 325–370.Google Scholar
  78. Vitousek, P. M. & W. A. Reiners, 1975. Ecosystem succession and nutrient retention: a hypothesis. BioScience 25(6): 376–381.CrossRefGoogle Scholar
  79. Vollenweider, R. A., 1969. Möglichkeiten und Grenzen elementarer Modelle der Stoffbilanz von Seen. Archiv für Hydrobiologie 66: 1–36.Google Scholar
  80. Vollenweider, R. A., 1975. Input–output models with special reference to the phosphorus loading concept in limnology. Schweizerische Zeitschrift für Hydrologie 37: 53–84.CrossRefGoogle Scholar
  81. Vollenweider, R. A. & J. Kerekes, 1980. OECD Cooperative Programme for Monitoring of Inland Waters (Eutrophication Control). Synthesis Report, OECD, Paris.Google Scholar
  82. Wagner, K., 1996. Diagnostic and Feasibility Study of Lake Skipout. Phase I Clean Lakes project. Final Report. Oklahoma Conservation Commission Water Quality Division.Google Scholar
  83. Welch, E. B., 1992. Ecological Effects of Wastewater: Applied Limnology and Pollutant Effects. Chapman & Hall, London, UK.Google Scholar
  84. Wetzel, R. G., 2001. Limnology—Lake and River Ecosystems, 3rd ed. Academic Press, California.Google Scholar
  85. White, J. S. & S. E. Bayley, 2001. Nutrient retention in a northern prairie marsh (Frank Lake, Alberta) receiving municipal and agro-industrial wastewater. Water, Air and Soil Pollution 126: 63–81.CrossRefGoogle Scholar
  86. Wright, J., H. Helminen & A. Hirvonen, 1993. External phosphorus load to Lake Köyliönjä’rvi. Vesitalous 5: 29–33 (in Finnish).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartu CountyEstonia
  2. 2.Institute for Environment and Sustainability, European Commission—DG Joint Research CentreIspraItaly

Personalised recommendations