, Volume 657, Issue 1, pp 3–18 | Cite as

Understanding effects of global change on river ecosystems: science to support policy in a changing world



The generation of scientific knowledge to inform environmental management is crucial with current rates of global change. Although ecology and river science in particular have advanced greatly in the last 40 years, gaps remain between what we know and what environmental managers need to know to protect and restore aquatic resources. We argue that detailed quantitative relationships among human activities, contaminants, habitat alterations, and ecosystem services are needed to fill many of these gaps. Given that detailed research efforts cannot be conducted on all water bodies of the planet, scientists need to develop methods for transferring these global change relationships (models) from one system and region to another. Complexity in global change relationships is caused by natural variation among rivers and variation among responses to human activities. We propose resolving this complexity with a set of guiding principles intended to facilitate transfer of knowledge learned in one river or region to another. The ecology of disturbance provides the theoretical framework for predicting effects of human activities on rivers as well as management activities. Predicting river responses to human activities is challenged by the diversity of contaminants and habitat alterations associated with these activities, but predicting effects of human activities can be improved by recognizing: similarities in sets of stressors within classes of human activities; similarities in how different stressors affect rivers; and distinguishing effects of stressors having direct versus indirect regulation of ecosystem services. Geology and climate are key variables for predicting ecological response to human activities because they regulate the natural variation in river structure and function as well as the human activities and corresponding sets of stressors in watersheds. Transferring relationships among systems can be facilitated by emphasis on direct rather than indirect relationships and developing predictions of how geology and climate regulate direct relationships in global change ecology. These guiding principles for predicting effects of human activities should be tested and refined to resolve complexity and to manage ecosystem services, which will emerge as an important currency for global assessment of ecosystems.


Land use Environment Geology Climate Disturbance Stressor 



Stevenson and Sabater acknowledge Judit Padisak for the invitation to prepare this special issue of Hydrobiologia. Stevenson acknowledges financial support from the Great Lakes Fisheries Trust and the following grants from the United States Environmental Protection Agency, G2M104070 and R-83059601. Sabater acknowledges the financial support provided by projects CGL2007-65549/BOS, CGL2008-05618-C02-01 and SCARCE (Consolider Ingenio 2010, CSD2009-00065) of the Spanish Ministry of Science and Innovation.


  1. Acuña, V., 2010. Flow regime alteration effects on the organic C dynamics in semiarid stream ecosystems. Hydrobiologia. doi: 10.1007/s10750-009-0084-3.
  2. Alcamo, J., M. Flörke & M. Märker, 2007. Future long-term changes in global water resources driven by socioeconomic and climatic change. Hydrological Sciences Journal 52: 247–275.CrossRefGoogle Scholar
  3. Alexander, B. N., E. W. Boyer, R. A. Smith, G. E. Schwarz & R. B. Moore, 2007. The role of headwater streams in downstream water quality. Journal of the American Water Resources Association 43: 41–49.CrossRefGoogle Scholar
  4. Allan, J. D. & M. A. Castillo, 2007. Stream Ecology: Structure and Function Of Running Waters, 2nd ed. Springer, Dordrecht, The Netherlands.Google Scholar
  5. Asner, G. P., A. J. Elmore, L. P. Olander, R. E. Martin & A. T. Harris, 2004. Grazing systems, ecosystem responses, and global change. Annual Review of Environment and Resources 29: 261–299.CrossRefGoogle Scholar
  6. Aumen, N. G. & K. E. Havens, 1997. Needed: a new cadre of applied scientists skilled in basic science, communication, and aquatic resource management. Journal of the North American Benthological Society 16: 710–716.CrossRefGoogle Scholar
  7. Baron, J. S., N. L. Poff, P. L. Angermeier, C. N. Dahm, P. H. Gleick, N. G. Hairston, R. B. Jackson, C. A. Johnston, B. D. Richter & A. D. Steinman, 2002. Meeting ecological and societal needs for freshwater. Ecological Applications 12: 1247–1260.CrossRefGoogle Scholar
  8. Bates, B. C., Z. W. Kundzewicz, S. Wu & J. P. Palutikof (eds), 2008. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva: 210.Google Scholar
  9. Bender, E. A., T. J. Case & M. E. Gilpin, 1984. Perturbation experiments in community ecology: theory and practice. Ecology 65: 1–13.CrossRefGoogle Scholar
  10. Benke, A. C. & C. E. Cushing, 2005. Rivers of North America. Academic/Elsevier, Amsterdam/Boston.Google Scholar
  11. Beyers, D. W., 1998. Causal inference in environmental impact studies. Journal of the North American Benthological Society 17: 367–373.CrossRefGoogle Scholar
  12. Biggs, B. J. F., 1996. Patterns in benthic algae of streams. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, CA: 31–56.Google Scholar
  13. Boix, D., E. García-Berthou, S. Gascón, L. Benejam, E. Tornés, J. Sala, J. Benito, C. Munné & S. Sabater, 2010. Response of community structure to sustained drought in Mediterranean rivers. Journal of Hydrology 383: 135–146.CrossRefGoogle Scholar
  14. Bothwell, M. L., 1988. Growth rate responses of lotic periphytic diatoms to experimental phosphorus enrichment: the influence of temperature and light. Canadian Journal of Fisheries and Aquatic Sciences 45: 261–270.CrossRefGoogle Scholar
  15. Bridge, J. S., 2003. Rivers and Floodplains: Forms, Processes, and Sedimentary Record. Blackwell Publishing, Oxford, UK.Google Scholar
  16. Burt, T. P., G. Pinay & S. Sabater, 2010. Riparian zone hydrology and biogeochemistry: a review. In Burt, T. P., G. Pinay & S. Sabater (eds), Hydrology and Nitrogen Buffering Capacity of Riparian Zones. International Association of Hydrological Sciences Benchmark Papers in Hydrology, Toronto.Google Scholar
  17. Carpenter, S. R., H. A. Mooney, J. Agard, D. Capistrano, R. S. DeFries, S. Díaz, T. Dietz, A. K. Duraiappah, A. Oteng-Yeboah, H. M. Pereira, C. Perrings, W. V. Reid, J. Sarukhan, R. J. Scholes & A. Whyte, 2009. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proceedings of the National Academy of Sciences of the United States of America 106: 1305–1312.CrossRefPubMedGoogle Scholar
  18. Collins, S. L., S. M. Swinton, C. W. Anderson, B. J. Benson, J. Brunt, T. Gragson, N. B. Grimm, M. Grove, D. Henshaw, A. K. Knapp, G. Kofinas, J. J. Magnuson, W. McDowell, J. Melack, J. C. Moore, L. Ogden, J. H. Porter, O. J. Reichman, G. P. Robertson, M. D. Smith, J. V. Castle & A. C. Whitmer, 2007. Integrated science for society and the environment: a strategic research initiative. In Miscellaneous Publications of the LTER Network. Available at http://www.lternet.edu.
  19. Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs—high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199:1302–1310CrossRefPubMedGoogle Scholar
  20. D’angelo, D. J., S. V. Gregory, L. R. Ashkenas & J. L. Meyer, 1997. Physical and biological linkages within a stream geomorphic hierarchy: a modeling approach. Journal of the North American Benthological Society 16: 480–502.CrossRefGoogle Scholar
  21. Davies, S. P. & S. K. Jackson, 2006. The biological condition gradient: a descriptive model for interpreting change in aquatic ecosystems. Ecological Applications 16: 1251–1266.CrossRefPubMedGoogle Scholar
  22. Dodds, W. K., V. H. Smith & B. Zander, 1997. Developing nutrient targets to control benthic chlorophyll levels in streams: a case study of the Clark Fork River. Water Research 31: 1738–1750.CrossRefGoogle Scholar
  23. Donato-Rondón, J. C., S. J. Morales-Duarte & M. I. Castro-Rebolledo, 2010. Effects of eutrophication on the interaction between algae and grazers in an Andean stream. Hydrobiologia. doi: 10.1007/s10750-010-0194-y.
  24. Dunne, T. & L. B. Leopold, 1978. Water in Environmental Planning. W.H. Freeman, San Francisco.Google Scholar
  25. Ellis, E. C. & N. Ramankutty, 2008. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6: 439–447.CrossRefGoogle Scholar
  26. Elosegi, A., J. Díez & M. Mutz, 2010. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia. doi: 10.1007/s10750-009-0083-4.
  27. European Union Commission., 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. The European Parliament and the Council of the European Union. Official Journal of the European Communities L 327/1, 1-72.Google Scholar
  28. Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty & P. K. Snyder, 2005. Global consequences of land use. Science 309: 570–574.CrossRefPubMedGoogle Scholar
  29. Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199–214.CrossRefGoogle Scholar
  30. Fu, G. B., S. L. Chen, C. M. Liu & D. Shepard, 2004. Hydro-climatic trends of the Yellow River basin for the last 50 years. Climatic Change 65: 149–178.CrossRefGoogle Scholar
  31. Grime, J. P., 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344–347.CrossRefGoogle Scholar
  32. Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai & J. M. Briggs, 2008. Global change and the ecology of cities. Science 319: 756–760.CrossRefPubMedGoogle Scholar
  33. Guasch, H., E. Navarro, A. Serra & S. Sabater, 2004. Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwater Biology 49: 463–473.CrossRefGoogle Scholar
  34. Guasch, H., G. Atli, B. Bonet, N. Corcoll, M. Leira & A. Serra, 2010. Discharge and the response of biofilms to metal exposure in Mediterranean rivers. Hydrobiologia. doi: 10.1007/s10750-010-0116-z.
  35. Hamilton, S. K., 2010. Biogeochemical implications of climate change for tropical rivers and floodplains. Hydrobiologia. doi: 10.1007/s10750-009-0086-1.
  36. Hamilton, A.T., M. T. Barbour & B. G. Bierwagen, 2010. Implications of global change for the maintenance of water quality and ecological integrity in the context of current water laws and environmental policies. Hydrobiologia. doi: 10.1007/s10750-010-0316-6.
  37. Hill, W. R., M. G. Ryon & E. M. Schilling, 1995. Light limitation in a stream ecosystem: responses by primary producers and consumers. Ecology 76: 1297–1309.CrossRefGoogle Scholar
  38. Hilton, J., M. O’Hare, M. J. Bowes & I. I. Jones, 2006. How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment 365: 66–83.CrossRefPubMedGoogle Scholar
  39. Jørgensen, S. E. & F. Müller, 2000. Handbook of Ecosystem Theories and Management. Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  40. Kaushal, S. S., G. E. Likens, N. A. Jaworski, M. L. Pace, A. M. Sides, D. Seekell, K. T. Belt, D. H. Secor & R. L. Wingate, 2010. Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment. (in press).Google Scholar
  41. Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.CrossRefGoogle Scholar
  42. Leira, M. & S. Sabater, 2005. Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research 39: 73–82.CrossRefPubMedGoogle Scholar
  43. Leopold, L. B., M. G. Wolman & J. P. Miller, 1964. Fluvial Processes in Geomorphology. W.H. Freeman, San Francisco.Google Scholar
  44. Liu, J., T. Dietz, S. R. Carpenter, M. Alberti, C. Folke, E. Moran, A. N. Pell, P. Deadman, T. Kratz, J. Lubchenco, E. Ostrom, Z. Ouyang, W. Provencher, C. L. Redman, S. H. Schneider & W. W. Taylor, 2007. Complexity of coupled human and natural systems. Science 317: 1513–1516.CrossRefPubMedGoogle Scholar
  45. López-Doval, J. C., M. Ricart, H. Guasch, A. M. Romaní, S. Sabater & I. Muñoz, 2010. Does grazing pressure change modify diuron toxicity in a biofilm community? Archives of Environmental Contamination and Toxicology 58: 955–962.CrossRefPubMedGoogle Scholar
  46. Manoylov, K. M. & R. J. Stevenson, 2006. Density-dependent algal growth along N and P nutrient gradients in artificial streams. In Ognjanova-Rumenova, N. & K. Manoylov (eds), Advances in Phycological Studies. Pensoft Publishers, Moscow, Russia: 333–352.Google Scholar
  47. Margalef, R., 1983. Limnología. Omega, Barcelona.Google Scholar
  48. Margalef, R., 1997. Our Biosphere. Ecology Institute, Oldendorf.Google Scholar
  49. Mas-Martí, E., E. García-Berthou, S. Sabater, S. Tomanova & I. Muñoz, 2010. Comparing fish assemblages and trophic ecology of permanent and intermittent reaches in a Mediterranean stream. Hydrobiologia. doi: 10.1007/s10750-010-0292-x.
  50. Meybeck, M. & R. Helmer, 1989. The quality of rivers: from pristine stage to global pollution. Paleogeography, Paleoclimatology, Paleoecology 75: 283–309.CrossRefGoogle Scholar
  51. Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC.Google Scholar
  52. Milly, P. C. D., K. A. Dunne & A. V. Vecchia, 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438: 347–350.CrossRefPubMedGoogle Scholar
  53. Miltner, R. J. & E. T. Rankin, 1998. Primary nutrients and the biotic integrity of rivers and streams. Freshwater Biology 40: 145–158.CrossRefGoogle Scholar
  54. Molles, M. C. Jr., C. S. Crawford, L. M. Ellis, H. M. Valett & C. N. Dahm, 1998. Managed flooding for riparian ecosystem restoration. Bioscience 48: 749–756.CrossRefGoogle Scholar
  55. Montuelle, B., U. Dorigo, A. Bérard, B. Volat, A. Bouchez, A. Tlili, V. Gouy & S. Pesce, 2010. The periphyton as a multimetric bioindicator for assessing the impact of land use on river: an overview on the Ardières-Morcille experimental watershed (France) Hydrobiologia. doi: 10.1007/s10750-010-0105-2.
  56. Muradian, R., 2001. Ecological thresholds: a survey. Ecological Economics 38: 7–24.CrossRefGoogle Scholar
  57. National Research Council, 1986. Ecological Knowledge and Environmental Problem-Solving: Concepts and Case Studies. National Academy Press, Washington, DC.Google Scholar
  58. Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.CrossRefPubMedGoogle Scholar
  59. Norton, S. B., S. M. Cormier, G. W. Suter II, K. Schofield, L. Yuan, P. Shaw-Allen & C. R. Ziegler, 2009. CADDIS: the causal analysis/diagnosis decision information system. In Marcomini, A., G. W. Suter II & A. Critto (eds), Decision Support Systems for Risk-Based Management of Contaminated Sites. Springer, Berlin: 1–24.CrossRefGoogle Scholar
  60. O’Brien, P. J. & J. D. Wehr, 2010. Periphyton biomass and ecological stoichiometry in streams within an urban to rural land-use gradient. Hydrobiologia. doi: 10.1007/s10750-009-9984-5.
  61. O’Connor, N. A. & P. S. Lake, 1994. Long-term and seasonal large-scale disturbances of a small lowland stream. Australian Journal of Marine and Freshwater Research 45: 243–255.CrossRefGoogle Scholar
  62. Odum, E. P., J. T. Finn & E. H. Franz, 1979. Perturbation theory and the subsidy-stress gradient. BioScience 29: 349–352.CrossRefGoogle Scholar
  63. Oki, T. & S. Kanae, 2006. Global hydrological cycles and world water resources. Science 313: 1068–1072.CrossRefPubMedGoogle Scholar
  64. Omernik, J. M., 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers 77: 118–125.CrossRefGoogle Scholar
  65. Palmer, M. A., D. P. Lettenmaier, N. L. Poff, S. L. Postel, B. Richter & R. Warner, 2009. Climate change and river ecosystems: protection and adaptation options. Environmental Management 44: 1053–1068.CrossRefPubMedGoogle Scholar
  66. Pan, Y., R. J. Stevenson, B. H. Hill, A. T. Herlihy & G. B. Collins, 1996. Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. Journal of the North American Benthological Society 15: 481–495.CrossRefGoogle Scholar
  67. Perkins, D. M., J. Reiss, G. Yvon-Durocher & G. Woodward. 2010. Global change and food webs in running waters. Hydrobiologia. doi: 10.1007/s10750-009-0080-7.
  68. Pickett, S. T. A., S. L. Collins & J. J. Armesto, 1987. Models, mechanisms, and pathways of succession. Botanical Review 53: 335–371.CrossRefGoogle Scholar
  69. Poff, N. L. & J. K. H. Zimmerman, 2010. Ecological responses to altered flow regimes: a literature review to inform environmental flows science and management. Freshwater Biology 55: 194–205.CrossRefGoogle Scholar
  70. Poff, N. L., B. Richter, A. H. Arthington, S. E. Bunn, R. J. Naiman, E. Kendy, M. Acreman, C. Apse, B. P. Bledsoe, M. Freeman, J. Henriksen, R. B. Jacobson, J. Kennen, D. M. Merritt, J. O’Keeffe, J. D. Olden, K. Rogers, R. E. Tharme & A. Warner, 2010. The Ecological Limits of Hydrologic Alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology 55: 147–170.CrossRefGoogle Scholar
  71. Postel, S. L. & S. R. Carpenter, 1997. Freshwater ecosystem services. In Daily, G. C. (ed.), Nature’s Services. Island Press, Washington, DC: 195–214.Google Scholar
  72. Power, M. E., A. Sun, G. Parker, W. E. Dietrich & J. T. Wootton, 1995. Hydraulic food chain models. BioScience 45: 159–167.CrossRefGoogle Scholar
  73. Ramankutty, N. & J. Foley, 1999. Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles 13: 997–1028.CrossRefGoogle Scholar
  74. Rapport, D. J., H. A. Regier & T. C. Hutchinson, 1985. Ecosystem behaviour under stress. American Naturalist 125: 617–640.CrossRefGoogle Scholar
  75. Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 183–188.CrossRefGoogle Scholar
  76. Ricart, M., H. Guasch, D. Barceló, R. Brix, M. H. Conceição, A. Geiszinger, M. López De Alda, J. López-Doval, I. Muñoz, A. M. Romaní, M. Villagrassa & S. Sabater, 2010. Primary and complex stressors in polluted Mediterranean rivers: pesticide effects on biological communities. Journal of Hydrology 383: 52–61.CrossRefGoogle Scholar
  77. Richards, C., L. B. Johnson & G. E. Host, 1996. Landscape-scale influences on stream habitats and biota. Canadian Journal of Fisheries and Aquatic Sciences 53: 295–311.CrossRefGoogle Scholar
  78. Riseng, C. M., M. J. Wiley & R. J. Stevenson, 2004. Hydrologic disturbance and nutrient effects on benthic community structure in midwestern US streams: a covariance structure analysis. Journal of the North American Benthological Society 23: 309–326.CrossRefGoogle Scholar
  79. Robertson, G. P. & S. M. Swinton, 2005. Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture. Frontiers in Ecology and the Environment 3: 38–46.CrossRefGoogle Scholar
  80. Rodrigues Capítulo, A., N. Gómez, A. Giorgi & C. Feijoo, 2010. Global changes in pampean lowland streams (Argentina): implications for biodiversity and functioning. Hydrobiologia. doi: 10.1007/s10750-010-0319-3.
  81. Sabater, S., 2008. Alterations of the global water cycle and their effects on river structure, function and services. Freshwater Reviews 1: 75–88.Google Scholar
  82. Sabater, S. & K. Tockner, 2010. Effects of hydrologic alterations on the ecological quality of river ecosystems. In Sabater, S. & D. Barcelo (eds), Water Scarcity in the Mediterranean: Perspectives Under Global Change. Springer Verlag, Berlin: 15–39.CrossRefGoogle Scholar
  83. Sabater, S., E. Vilalta, A. Gaudes, H. Guasch, I. Munoz & A. Romani, 2003. Ecological implications of mass growth of benthic cyanobacteria in rivers. Aquatic Microbial Ecology 32: 175–184.CrossRefGoogle Scholar
  84. Sabater, S., V. Acuna, A. Giorgi, E. Guerra, I. Munoz & A. M. Romani, 2005. Effects of nutrient inputs in a forested Mediterranean stream under moderate light availability. Archiv Fur Hydrobiologie 163: 479–496.CrossRefGoogle Scholar
  85. Sabater, S., J. Artigas, A. Gaudes, I. Muñoz, G. Urrea & A. M. Romaní, 2010. Moderate long-term nutrient input enhances autotrophy in a forested Mediterranean stream. Freshw Biol (submitted).Google Scholar
  86. Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Biodiversity – global biodiversity scenarios for the year 2100. Science 287: 1770–1774.CrossRefPubMedGoogle Scholar
  87. Schulze, R. E., 2007. Some foci of integrated water resources management in the “South” which are oft-forgotten by the “North”: a perspective from southern Africa. Water Resources Management 21: 269–294.CrossRefGoogle Scholar
  88. Schwarzenbach, R. P., B. I. Escher, K. Fenner, T. B. Hofstetter, C. A. Johnson, U. Von Gunten & B. Wehrli, 2006. Global hydrological cycles and world water resources. Science 313: 1072–1077.CrossRefPubMedGoogle Scholar
  89. Smith, M. D., A. K. Knapp & S. L. Collins, 2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90: 3279–3289.CrossRefPubMedGoogle Scholar
  90. Solomon, S., D. Qin, M. Manning, R. B. Alley, T. Berntsen, N. L. Bindoff, Z. Chen, A. Chidthaisong, J. M. Gregory, G. C. Hegerl, M. Heimann, B. Hewitson, B. J. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, T. Matsuno, M. Molina, N. Nicholls, J. Overpeck, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, R. Somerville, T. F. Stocker, P. Whetton, R. A. Wood & D. Wratt, 2007. Technical Summary. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  91. Soranno, P. A., K. S. Cheruvelil, R. J. Stevenson, S. L. Rollins, S. W. Holden, S. Heaton & E. Torng, 2008. A framework for developing ecosystem-specific nutrient criteria: integrating biological thresholds with predictive modeling. Limnology and Oceanography 53: 773–787.Google Scholar
  92. Stevenson, R. J., 1997a. Scale-dependent determinants and consequences of benthic algal heterogeneity. Journal of North American Benthological Society 16: 248–262.CrossRefGoogle Scholar
  93. Stevenson, R. J., 1997b. Resource thresholds and stream ecosystem sustainability. Journal of the North American Benthological Society 16: 410–424.CrossRefGoogle Scholar
  94. Stevenson, R.J., in press. Coupling human and natural systems to solve environmental problems. Physics and Chemistry of the Earth.Google Scholar
  95. Stevenson, R. J., R. C. Bailey, M. C. Harass, C. P. Hawkins, J. Alba-Tercedor, C. Couch, S. Dyer, F. A. Fulk, J. M. Harrington, C. T. Hunsaker & R. K. Johnson, 2004. Interpreting results of ecological assessments. In Barbour, M. T., S. B. Norton, H. R. Preston & K. W. Thornton (eds), Ecological Assessment of Aquatic Resources: Linking Science to Decision-Making. Society of Environmental Toxicology and Contamination Publication, Pensacola, FL: 85–111.Google Scholar
  96. Stevenson, R. J., S. T. Rier, C. M. Riseng, R. E. Schultz & M. J. Wiley, 2006. Comparing effects of nutrients on algal biomass in streams in two regions with different disturbance regimes and with applications for developing nutrient criteria. Hydrobiologia 561: 140–165.CrossRefGoogle Scholar
  97. Stevenson, R. J., B. E. Hill, A. T. Herlihy, L. L. Yuan & S. B. Norton, 2008. Algal-P relationships, thresholds, and frequency distributions guide nutrient criterion development. Journal of the North American Benthological Society 27: 783–799.CrossRefGoogle Scholar
  98. Stevenson, R. J., B. J. Bennett, D. N. Jordan & R. D. French. Phosphorus regulates stream injury by filamentous green algae, thresholds, DO, and pH. (Hydrobiologia submitted).Google Scholar
  99. Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson & R. H. Norris, 2006. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications 16: 1267–1276.CrossRefPubMedGoogle Scholar
  100. Strayer, D. L., 2006. Challenges for freshwater invertebrate conservation. Journal of the North American Benthological Society 25: 271–287.CrossRefGoogle Scholar
  101. Sumpter, J. P., 2009. Protecting aquatic organisms from chemicals: the harsh realities. Philosophical Transactions of the Royal Society A 367: 3877–3894.CrossRefGoogle Scholar
  102. Suplee, M. W., V. Watson, M. Teply & H. McKee, 2008. How green is too green? Public opinion of what constitutes undesirable algae levels in streams. Journal of the American Water Works Association 44: 1–18.Google Scholar
  103. Suter, G. W., 1993. Ecological Risk Assessment. Lewis Publishers, Boca Raton, FL.Google Scholar
  104. Syvitski, J. P. M., C. J. Vorosmarty, A. J. Kettner & P. Green, 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308: 376–380.CrossRefPubMedGoogle Scholar
  105. Tilman, D., J. Fargione, B. Wolff, C. D’Antonio, A. Dobson, R. Howarth, D. Schindler, W. H. Schlesinger, D. Simberloff & D. Swackhamer, 2001. Forecasting agriculturally driven global environmental change. Science 292: 281–284.CrossRefPubMedGoogle Scholar
  106. Tockner, K., U. Uehlinger & C. T. Robsinson, 2009. Rivers of Europe. Academic Press, London.Google Scholar
  107. Uehlinger, U., C. T. Robinson, M. Hieber & R. Zah, 2010. The physico-chemical habitat template for periphyton in Alpine glacial streams under a changing climate. Hydrobiologia. doi: 10.1007/s10750-009-9963-x.
  108. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Science 37: 130–137.CrossRefGoogle Scholar
  109. Vitousek, P. M., 1994. Beyond global warming: ecology and global change. Ecology 75: 1861–1876.CrossRefGoogle Scholar
  110. Wang, L., D. M. Robertson & P. L. Garrison, 2007. Linkages between nutrients and assemblages of macroinvertebrates and fish in wadeable streams: implication to nutrient criteria development. Environmental Management 39: 194–212.CrossRefPubMedGoogle Scholar
  111. Wiley, M. J., D. W. Hyndman, B. C. Pijanowski, A. D. Kendall, C. Riseng, E. S. Rutherford, S. T. Cheng, M. L. Carlson, J. A. Tyler, R. J. Stevenson, P. J. Steen, P. L. Richards, P. W. Seelbach & J. M. Koches, 2010. A multi-modeling approach to evaluating climate and land use change impacts in a great lakes tributary river basin. Hydrobiologia. doi: 10.1007/s10750-010-0239-2.
  112. Xenopoulos, M. A. & D. M. Lodge, 2006. Going with the flow: using species-discharge relationships to forecast losses in fish biodiversity. Ecology 87: 1907–1914.CrossRefPubMedGoogle Scholar
  113. Xenopoulos, M. A., D. M. Lodge, J. Alcamo, M. Märker, K. Schulze & D. P. van Vuuren, 2005. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biology 11: 1557–1564.CrossRefGoogle Scholar
  114. Ylla, I., A. M. Romaní & S. Sabater, 2007. Differential effects of nutrients and light on the primary production of stream algae and mosses. Fundamental and Applied Limnology/Archiv für Hydrobiologie 170: 1–10.CrossRefGoogle Scholar
  115. Ylla, I., I. Sanpera-Calbet, E. Vázquez, A. M. Romaní, I. Muñoz, A. Butturini & S. Sabater, 2010. Organic matter availability during pre and post-drought periods in a Mediterranean stream. Hydrobiologia. doi: 10.1007/s10750-010-0193-z.
  116. Ziegler, S. E., D. R. Lyon, 2010. Factors regulating epilithic biofilm carbon cycling and release with nutrient enrichment in headwater streams. Hydrobiologia. doi: 10.1007/s10750-010-0296-6.
  117. Zoppini, A., S. Amalfitano, S. Fazi, A. Puddu, 2010. Dynamics of a benthic microbial community in a riverine environment subject to hydrological fluctuations (Mulargia River, Italy). Hydrobiologia. doi: 10.1007/s10750-010-0199-6.

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Zoology, Center for Water SciencesMichigan State UniversityEast LansingUSA
  2. 2.Institute of Aquatic Ecology, Faculty of SciencesUniversity of Girona and Catalan Institute for Water Research (ICRA)GironaSpain

Personalised recommendations