Advertisement

Hydrobiologia

, Volume 654, Issue 1, pp 267–271 | Cite as

Invertebrate dispersal by aquatic mammals: a case study with nutria Myocastor coypus (Rodentia, Mammalia) in Southern France

  • Aline WaterkeynEmail author
  • Olivier Pineau
  • Patrick Grillas
  • Luc Brendonck
Short research note

Abstract

Many freshwater invertebrates rely on vectors for their passive dispersal. A wide array of vectors has already been investigated, but dispersal mediated by aquatic mammals remains largely unknown. Since nutria (Myocastor coypus Molina, 1782) live in a variety of aquatic habitats and frequently move around between these water bodies, they have the opportunity to transport hitch-hiking aquatic invertebrates along with them. We investigated the presence of aquatic invertebrates in their fur to evaluate this hypothesis. This study demonstrates the feasibility of ectozoochory in a broad array of freshwater invertebrates by nutria on a local scale. More than 800 invertebrates of 14 different taxa were retrieved from the fur of 10 nutria specimens, including cladocerans, copepods, ostracods, rotifers, bryozoans, dipterans, nematodes, annelids and collembolans. Many of these freshwater invertebrates could survive at least 30 min in the moist fur of nutria. Therefore, we can state that besides modifying aquatic habitats physically by clearing vegetation or digging, nutria may also alter invertebrate communities by introducing new species or genotypes.

Keywords

Passive dispersal Aquatic mammals Myocastor coypus Ectozoochory Zooplankton Macroinvertebrates 

Notes

Acknowledgments

This study was funded by a Ph.D. grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT Vlaanderen) and by a grant from the French National Research Agency (ANRBIODIVERSITE ANR-05-BDIV-014).

References

  1. Abbas, A., 1991. Feeding strategy of coypu (Myocastor coypu) in central western France. Journal of Zoology 224: 385–401.CrossRefGoogle Scholar
  2. Adams, W. H. Jr., 1956. The nutria in coastal Louisisana. Proceedings of the Louisiana Academy of Sciences 19: 28–41.Google Scholar
  3. Aliev, F. F., 1965. Dispersal of nutria in the U.S.S.R. Journal of Mammalogy 46: 101–102.CrossRefGoogle Scholar
  4. Beladjal, L. & J. Mertens, 2009. Diaspore dispersal of Anostraca by flying insects. Journal of Crustacean Biology 29: 266–268.CrossRefGoogle Scholar
  5. Bilton, D. T., J. R. Freeland & B. Okamura, 2001. Dispersal in freshwater invertebrates: mechanisms and consequences. Annual Review in Ecology and Systematics 32: 159–181.CrossRefGoogle Scholar
  6. Bohonak, A. J. & D. G. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.CrossRefGoogle Scholar
  7. Bohonak, A. J. & H. H. Whiteman, 1999. Dispersal of the fairy shrimp Branchinecta coloradensis (Anostraca): effects of hydroperiod and salamanders. Limnology and Oceanography 44: 487–493.CrossRefGoogle Scholar
  8. Brochet, A. L., M. Gauthier-Clerc, M. Guillemain, H. Fritz, A. Waterkeyn, A. Baltanás & A. J. Green, 2010. Field evidence of dispersal of branchiopods, ostracods and bryozoans by teal (Anas crecca) in the Camargue (southern France). Hydrobiologia 637: 255–261.CrossRefGoogle Scholar
  9. Bullock, J. M., R. E. Kenward & R. S. Hail, 2002. Dispersal Ecology. Blackwell publishing, Oxford.Google Scholar
  10. Clobert, J., R. A. Ims & F. Rousset, 2004. Causes, mechanisms and consequences of dispersal. In Hanski, I. & O. E. Gaggiotti (eds), Ecology, Genetics and Evolution of Metapopulations. Elsevier Academic Press, Amsterdam: 307–335.CrossRefGoogle Scholar
  11. De Pauw, N. & R. Vannevel, 1990. Macro-invertebraten en waterkwaliteit: determinatiesleutels voor zoetwatermacro-invertebraten en methoden ter bepaling van de waterkwaliteit. Dossiers stichting leefmilieu, vol. 11. Stichting Leefmilieu, Antwerpen.Google Scholar
  12. Flößner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden.Google Scholar
  13. Green, A. J. & J. Figuerola, 2005. Recent advances in the study of long distance dispersal of aquatic invertebrates via birds. Diversity and Distributions 11: 149–156.CrossRefGoogle Scholar
  14. Havel, J. E. & J. B. Shurin, 2004. Mechanisms, effects and scales of dispersal in freshwater zooplankton. Limnology and Oceanography 49: 1229–1238.CrossRefGoogle Scholar
  15. Hulsmans, A., K. Moreau, L. De Meester, B. J. Riddoch & L. Brendonck, 2007. Direct and indirect measures of dispersal in the fairy shrimp Branchipodopsis wolfi indicate a small scale isolation-by-distance pattern. Limnology and Oceanography 52: 676–684.CrossRefGoogle Scholar
  16. Jouventin, P., 1996. Le ragondin: Biologie et Méthodes de Limitation des Populations. Editions Acta, Paris.Google Scholar
  17. Lagaude, V., 1975. Le Ragondin en Camargue. Phytoma: défense des cultures, aout-septembre.Google Scholar
  18. LeBlanc, D. J., 1994. Nutria: Prevention and Control of Wildlife Damage. Animal and Plant Health Inspection Service, NC.Google Scholar
  19. Mathevet, R. & J. Lucchesi, 1996. Le piégeage du Ragondin Myocastor coypus en Camargue et ses conséquences potentielles sur la faune sauvage. Faune de Provence (CEEP) 17: 45–47.Google Scholar
  20. Michels, E., K. Cottenie, L. Neys & L. De Meester, 2001. Zooplankton on the move: first results on the quantification of dispersal of zooplankton in a set of interconnected ponds. Hydrobiologia 442: 117–126.CrossRefGoogle Scholar
  21. Moore, W. G. & B. F. Faust, 1972. Crayfish as possible agents of dissemination of fairy shrimp into temporary ponds. Ecology 53: 314–316.CrossRefGoogle Scholar
  22. Peck, S. B., 1975. Amphipod dispersal in the fur of aquatic mammals. Canadian Field Naturalist 89: 181–182.Google Scholar
  23. Robicheaux, B. L., 1978. Ecology of nutria in a brackish marsh with variably spaced ditches, Rockefeller refuge, Louisiana. MS Thesis, Louisiana State University, LA.Google Scholar
  24. Ruttner-Kolisko, A., 1974. Plankton Rotifers: Biology and Taxonomy (English translation of Die Binnengewisser, Vol. XXVI). Lubrecht & Cramer, Stuttgart.Google Scholar
  25. Stauffacher, M., 1998. Dynamique d’une population de ragondins (Myocastor coypus) dans un marais Camarguais: contribution à la mesure de leur impact sur les roselières. MS Thesis, Université de Neuchâtel, France.Google Scholar
  26. Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2000. Invertébrés d’eau douce: systématique, biologie, écologie. CNRS Editions, Paris.Google Scholar
  27. Van de Meutter, F., R. Stocks & L. De Meester, 2008. Size-selective dispersal of Daphnia resting eggs by backswimmers (Notonecta maculata). Biology Letters 4: 494–496.CrossRefPubMedGoogle Scholar
  28. Vandekerckhove, J., S. Declerck, V. Maarten, L. Brendonck, E. Jeppesen, J. M. Conde Porcuna & L. De Meester, 2004. Use of ephippial morphology to assess richness of anomopods: potentials and pitfalls. Journal of Limnology 63: 75–84.Google Scholar
  29. Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2008a. Any way the wind blows – frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117: 125–134.CrossRefGoogle Scholar
  30. Vanschoenwinkel, B., A. Waterkeyn, T. Vandecaetsbeek, O. Pineau, P. Grillas & L. Brendonck, 2008b. Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshwater Biology 53: 2264–2273.Google Scholar
  31. Waterkeyn, A., P. Grillas, B. Vanschoenwinkel & L. Brendonck, 2008. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology 53: 1808–1822.CrossRefGoogle Scholar
  32. Waterkeyn, A., P. Grillas, E. R. M. De Roeck, L. Boven & L. Brendonck, 2009. Assemblage structure and dynamics of large branchiopods in Mediterranean temporary wetlands: patterns and processes. Freshwater Biology 54: 1256–1270.CrossRefGoogle Scholar
  33. Waterkeyn, A., B. Vanschoenwinkel, S. Elsen, M. Anton-Pardo, P. Grillas & L. Brendonck, 2010. Unintentional dispersal of aquatic invertebrates via foot wear and motor vehicles in a Mediterranean wetland area. Aquatic Conservation: Marine and Freshwater Ecosystems 20: 580–587.CrossRefGoogle Scholar
  34. Woods, C., L. Contreras, G. Willner-Chapman & H. P. Whidden, 1992. Myocastor coypus. Mammalian Species 398: 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Aline Waterkeyn
    • 1
    • 2
    Email author
  • Olivier Pineau
    • 2
  • Patrick Grillas
    • 2
  • Luc Brendonck
    • 1
  1. 1.Laboratory of Aquatic Ecology and Evolutionary Biology, Katholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Research Center for Mediterranean Wetlands, Tour du Valat, Le SambucArlesFrance

Personalised recommendations