, Volume 652, Issue 1, pp 299–310 | Cite as

Mesohabitat use by bullhead (Cottus gobio)

  • M.-P. GosselinEmail author
  • G. E. Petts
  • I. P. Maddock
Primary research paper


Habitat composition and connectivity within a stream vary with changing flows but the influence of changing flow on habitat use by fish is not well understood. Meso- and microhabitat surveys were used to investigate habitat use by bullhead (Cottus gobio Linnaeus) in response to discharge variation in a small tributary of the Upper Severn, England. Mesohabitat mapping surveys were carried out over a range of summer flows (0.016–0.216 m3 s−1) and were coupled with direct underwater observations (snorkelling) of fish location. Five mesohabitat types—glides, runs, riffles, chutes and pools—were present in the reach at all flows surveyed and ‘backwaters’ were found at three flows. The macro-morphology of the reach comprised six riffle–pool sequences divided into 27 mesohabitats with the maximum diversity (23 mesohabitats) at intermediate flows (Q 43) and only 15 mesohabitats at Q 95. Despite low numbers of fish (N = 78), bullhead displayed a strong association (51% of the fish) with glides—relatively deep habitats having high rates of velocity increase with flow. However, 54% of the fish were observed in two large, persistent mesohabitats, a glide (34%) and a pool (20%), both located below a faster flowing mesohabitat. Habitat use curves based upon micro-habitat data showed bullhead favoured low velocities (<0.30 m s−1), depths less than 0.30 m and a cobble substratum. This study illustrates the value of cross-scale investigations in linking fish ecology, flow and physical habitat variability and suggests mesohabitat size, persistence and arrangement may influence fish distribution.


Flow variability Habitat composition Mesohabitat surveys Cottus gobio Habitat use curves 


  1. Adis, J. & W. J. Junk, 2002. Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshwater Biology 47: 711–731.CrossRefGoogle Scholar
  2. Armitage, P. D., I. Pardo & A. Brown, 1995. Temporal constancy of faunal assemblages in ‘mesohabitats’ – application to management. Archiv für Hydrobiologie 133: 367–387.Google Scholar
  3. Carter, M. G., G. H. Copp & V. Szomlai, 2004. Seasonal abundance and microhabitat use of bullhead Cottus gobio and accompanying fish species in the river Avon (Hampshire), and implications for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 14: 395–412.CrossRefGoogle Scholar
  4. Cowx, I. G. & J. P. Harvey, 2003. Monitoring the Bullhead, Cottus gobio. English Nature, Peterborough.Google Scholar
  5. Dahl, J. & L. Greenberg, 1996. Effects of habitat structure on habitat use by Gammarus pulex in artificial streams. Freshwater Biology 36: 487–495.CrossRefGoogle Scholar
  6. Davey, A. J. H., S. J. Hawkins, G. F. Turner & C. P. Doncaster, 2005. Size-dependent microhabitat use and intraspecific competition in Cottus gobio. Journal of Fish Biology 67: 428–433.CrossRefGoogle Scholar
  7. Downhower, J. F., P. Lejeune, P. Gaudin & L. Brown, 1990. Movements of the Chabot (Cottus gobio) in a small stream. Polskie Archivum Hydrobiologii 37: 119–126.Google Scholar
  8. Environment Agency, 2003. River Habitat Survey in Britain and Ireland. Environment Agency.Google Scholar
  9. Fausch, K. D., C. E. Torgesen, C. V. Baxter & H. W. Li, 2002. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. BioScience 52: 483–498.CrossRefGoogle Scholar
  10. Fischer, S. & H. Kummer, 2000. Effects of residual flow and habitat fragmentation on distribution and movement of bullhead (Cottus gobio L.) in an alpine stream. Hydrobiologia 422(423): 305–317.CrossRefGoogle Scholar
  11. Fox, P. J., 1978. The population dynamics of the bullhead (Cottus gobio) with special reference for spawning, mortality of young fish and homeostatic mechanisms. PhD Thesis, Reading University.Google Scholar
  12. Harby, A., M. Baptist, M. J. Dunbar & S. Schmutz (eds), 2004. Cost Action 626 Report: State-of-the-art in data sampling, modelling analysis and applications of river habitat modelling.Google Scholar
  13. Hawkins, C. P., P. Kershner, A. Bisson, D. Bryant, L. M. Decker, S. V. Gregory, D. A. McCullogh, C. K. Overton, G. H. Reeves, R. J. Steedman & M. K. Young, 1993. A hierarchical approach to classifying stream habitat features. Fisheries 18: 3–12.CrossRefGoogle Scholar
  14. Heggenes, J. & S. J. Saltveit, 1990. Seasonal and spatial microhabitat selection and segregation in young Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., in a Norwegian river. Journal of Fish Biology 36: 707–720.CrossRefGoogle Scholar
  15. Hoover, T. M., J. S. Richardson & N. Yonemitsu, 2006. Flow-substrate interactions create and mediate leaf litter resource patches in streams. Freshwater Biology 51: 435–447.CrossRefGoogle Scholar
  16. Knaepkens, G., L. Bruyndoncx, L. Bervoets & M. Eens, 2002. The presence of artificial stones predicts the occurrence of the European bullhead (Cottus gobio) in a regulated lowland river in Flanders (Belgium). Ecology of Freshwater Fish 11: 203–206.CrossRefGoogle Scholar
  17. Knaepkens, G., L. Bruyndoncx, J. Coeck & M. Eens, 2004a. Spawning habitat enhancement in the European bullhead (Cottus gobio), an endangered freshwater fish in degraded lowland rivers. Biodiversity and Conservation 13: 2443–2452.CrossRefGoogle Scholar
  18. Knaepkens, G., L. Bruyndoncx & M. Eens, 2004b. Assessment of residency and movement of the endangered bullhead (Cottus gobio) in two Flemish rivers. Ecology of Freshwater Fish 13: 317–322.CrossRefGoogle Scholar
  19. Lamberti, G. A., S. V. Gregory, L. R. Ashkenas, R. C. Wildman & A. D. Steinman, 1989. Influence of channel geomorphology on retention of dissolved and particulate matter in a cascade mountain stream. USDA Forest Service General Technical Report PSW-110.Google Scholar
  20. Langford, T. E. & S. J. Hawkins, 1997. The distribution and abundance of three fish species in relation to timber debris and mesohabitats in a lowland forest stream during autumn and winter. Limnetica 13: 93–102.Google Scholar
  21. Legalle, M., S. Mastrorillo, F. Santoul & R. Céréghino, 2004. Ontogenetic microhabitat shifts in the bullhead Cottus gobio L., in a fast flowing stream. International Review of Hydrobiology 90: 310–321.CrossRefGoogle Scholar
  22. Legalle, M., F. Santoul, J. Figuerola, S. Mastrorillo & R. Céréghino, 2005. Factors influencing the spatial distribution patterns of the bullhead (Cottus gobio L., Teleostei Cottidae): a multi-scale study. Biodiversity and Conservation 14: 1319–1334.CrossRefGoogle Scholar
  23. Lytle, D. A. & N. L. Poff, 2004. Adaptation to natural flow regimes. Trends in Ecology and Evolution 19: 94–100.CrossRefPubMedGoogle Scholar
  24. Maddock, I., P. & K. Lander, 2002. Testing the effectiveness of rapid habitat mapping to describe instream hydraulics. Unpublished paper, 4th International Symposium on Ecohydraulics, Cape Town, South Africa, March 2002.Google Scholar
  25. Maddock, I., P. N. Smolar-Žvanut & G. Hill, 2008. The effect of flow regulation on the distribution and dynamics of channel geomorphic units (cgus) and implications for marble trout (Salmo marmoratus) spawning habitat in the Soča River, Slovenia. IOP Conference Series: Earth and Environmental Sciences 4: 1–10.Google Scholar
  26. Newson, M. D., D. M. Harper, C. L. Padmore, J. L. Kemp & B. Vogel, 1998. A cost effective approach for linking habitats, flow types and species requirements. Aquatic Conservation: Marine and Freshwater Ecosystems 8: 431–446.CrossRefGoogle Scholar
  27. Newson, M. D. & C. L. Newson, 2000. Geomorphology, ecology and river channel habitat: mesoscale approaches to basin-scale challenges. Progress in Physical Geography 24: 195–217.CrossRefGoogle Scholar
  28. Padmore, C. L., 1997. Biotopes and their hydraulics: a method for determining the physical component of freshwater habitat quality. In Boon, P. J. & D. L. Howell (eds), Freshwater Quality: Defining the Indefinable. HMSO, Edinburgh: 251–257.Google Scholar
  29. Parasiewicz, P., 2001. MesoHABSIM: a concept for application of instream flow models in river restoration planning. Fisheries 26: 6–13.CrossRefGoogle Scholar
  30. Parasiewicz, P., 2007. Arena: the MesoHABSIM model revisited. River Research and Applications 23: 893–903.CrossRefGoogle Scholar
  31. Perrow, M., N. Punchard & A. Jowitt, 1997. The Habitat Requirements of Bullhead (Cottus gobio) and Brown Trout (Salmo trutta) in the Headwaters of Norfolk rivers: Implications for Conservation and Fisheries. ECON, Ecological Consultancy & Environment Agency, Eastern Area, Peterborough: 50.Google Scholar
  32. Petts, G. E., 2009. Instream flow science for sustainable river management. Journal of the American Water Resources Association 45: 1071–1086.CrossRefGoogle Scholar
  33. Petts, G. E., J. Nestler & R. Kennedy, 2006. Advancing science for water resources management. Hydrobiologia 565: 277–288.CrossRefGoogle Scholar
  34. Petty, J. T. & G. D. Grossman, 2007. Size-dependent territoriality of mottled sculpin in a Southern Appalachian stream. Transactions of the American Fisheries Society 136: 1750–1761.CrossRefGoogle Scholar
  35. Poff, N. L. & J. K. H. Zimmerman, 2010. Ecological responses to altered flow regimes: a literature review to inform environmental flows science and management. Freshwater Biology 55: 194–205.CrossRefGoogle Scholar
  36. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richeter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime. BioScience 47: 769–784.CrossRefGoogle Scholar
  37. Rempel, L. L., J. S. Richardson & M. C. Healey, 2000. Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwater Biology 45: 57–73.CrossRefGoogle Scholar
  38. Roni, P., 2002. Habitat use by fishes and pacific giant salamanders in small western Oregon and Washington streams. Transactions of the American Fisheries Society 131: 743–761.CrossRefGoogle Scholar
  39. Roussel, J.-M. & A. Bardonnet, 1996. Changements d’habitat de la truite (Salmo trutta) et du chabot (Cottus gobio) au cours du nychtémère. Approches multivariées à différentes échelles spatiales. Cybium 20: 43–53.Google Scholar
  40. Stalnaker, C. B., K. D. Bovee & T. J. Waddle, 1996. Importance of the temporal aspects of habitat dynamics to fish population studies. Regulated Rivers: Research and Management 12: 145–153.CrossRefGoogle Scholar
  41. Tickner, D., P. D. Armitage, M. A. Bickerton & K. A. Hall, 2000. Assessing stream quality using information on mesohabitat distribution and character. Aquatic Conservation: Marine and Freshwater Ecosystems 10: 179–196.CrossRefGoogle Scholar
  42. Tomlinson, M. L. & M. R. Perrow, 2003. Ecology of the Bullhead. Conserving Natura 2000 Rivers Ecology Series No. 4. English Nature, Peterborough.Google Scholar
  43. Wadeson, L. A., 1994. A geomorphological approach to the identification and classification of instream flow environments. South African Journal of Aquatic Sciences 20: 1–24.Google Scholar
  44. Webb, P. W., C. L. Gerstner & S. T. Minton, 1996. Station-holding by the mottled sculpin, Cottus bairdi (Teleostei: Cottidae), and other fishes. Copeia 2: 488–493.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M.-P. Gosselin
    • 1
    • 3
    • 4
    Email author
  • G. E. Petts
    • 2
  • I. P. Maddock
    • 3
  1. 1.School of Geography, Earth and Environmental SciencesUniversity of BirminghamEdgbastonUK
  2. 2.University of WestminsterLondonUK
  3. 3.Institute of Science and the EnvironmentUniversity of Worcester, Henwick GroveWorcesterUK
  4. 4.Department of BiologyKarlstad UniversityKarlstadSweden

Personalised recommendations