Advertisement

Hydrobiologia

, Volume 653, Issue 1, pp 179–190 | Cite as

Homage to the Virgin of Ecology, or why an aquatic insect unadapted to desiccation may maintain populations in very small, temporary Mediterranean streams

  • Cesc MúrriaEmail author
  • Núria Bonada
  • Carles Ribera
  • Narcís Prat
SANTA ROSALIA 50 YEARS ON

Abstract

In temporary streams, the annual constriction of drying is associated with high local extinction risk. To survive in such habitats, organisms with no specific biological traits for coping with dry periods should experience high colonisation rates from permanent reaches of the same basin or from other basins. Hydropsyche siltalai is a widespread caddisfly common in permanent and temporary headwaters reaches in the Mediterranean climate region of the Iberian Peninsula. In this study, we used genetic analyses to test if populations of H. siltalai in temporary streams are resettled from populations of the same basin or from other basins. The geographical distribution of H. siltalai was surveyed in 97 temporary and permanent reaches across four basins; larvae were found in 22 reaches (12 temporary and 10 permanent). Population genetic analyses of 11 selected reaches (6 temporary and 5 permanent) revealed low genetic diversity and no genetic population structure among and within basins. Overall, H. siltalai appeared to disperse well among basins independent of stream temporality. Permanent reaches from different basins act as a source of the individuals that recolonise temporary reaches after local extinctions, indicating a metapopulation structure at regional scale. Moreover, our results support other studies that showed that dispersal among basins is a recurrent pattern in aquatic insects.

Keywords

Dispersal Gene flow Hydropsychidae Phylogeography Temporary streams 

Notes

Acknowledgements

We are grateful to the ‘Centre d’Estudis de Rius Mediterranis’ and ‘L’Observatori de la Tordera’ for providing individuals of H. siltalai from the Ter and La Tordera basins. We thank M. A. Arnedo, J. Barquín, B. D. Cook, A. T. Rugenski and two anonymous reviewers who provided useful comments on earlier versions of this manuscript and to the F.E.M. research group for helping in the field. Finally, many thanks to M. Loukota, N. Tasko, L. Bidegaray and J. Roca for their assistance in the molecular lab.

References

  1. Avise, J. C., 2009. Phylogeography: retrospect and prospect. Journal of Biogeography 36: 3–15.CrossRefGoogle Scholar
  2. Baker, A. M., S. A. Williams & J. M. Hughes, 2003. Patterns of spatial genetic structuring in a hydropsychid caddisfly (Chemautopsyche sp. AV1) from southeastern Australia. Molecular Ecology 12: 3313–3324.CrossRefPubMedGoogle Scholar
  3. Benda, L., N. L. Poff, D. Miller, T. Dunne, G. Reeves, G. Pess & M. Pollock, 1997. The network dynamics hypothesis: how channel networks structure riverine habitats. Bioscience 54: 413–427.CrossRefGoogle Scholar
  4. Bilton, D. T., J. R. Freeland & B. Okamura, 2001. Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics 32: 159–181.CrossRefGoogle Scholar
  5. Bohonak, A. J., 1999. Dispersal, gene flow, and population structure. The Quaternarly Review of Biology 74: 21–45.CrossRefGoogle Scholar
  6. Bohonak, A. J. & D. G. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.CrossRefGoogle Scholar
  7. Bonada, N., C. Zamora-Muñoz, M. Rieradevall & N. Prat, 2004. Ecological profiles of caddisfly larvae in Mediterranean streams: implications for bioassessment methods. Environmental Pollution 132: 509–521.CrossRefPubMedGoogle Scholar
  8. Bonada, N., M. Rieradevall & N. Prat, 2007a. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589: 91–106.CrossRefGoogle Scholar
  9. Bonada, N., M. Rieradevall, N. Prat & V. H. Resh, 2007b. Benthic macroinvertebrate assemblage and macrohabitat connectivity in Mediterranean-climate streams of northern California. Journal of North American Benthological Society 25: 32–43.CrossRefGoogle Scholar
  10. Boon, P. J., 1978. The pre-impoundment distribution of certain Trichoptera larvae in the North Tyne river system (northern England) with particular reference to current speed. Hydrobiologia 57: 167–174.CrossRefGoogle Scholar
  11. Bunn, S. E. & J. M. Hughes, 1997. Dispersal and recruitment in streams: evidence from genetic studies. Journal of the North American Benthological Society 16: 338–346.CrossRefGoogle Scholar
  12. Caudill, C. C., 2003a. Empirical evidence for nonselective recruitment and a source-link dynamic in a mayfly metapopulation. Ecology 84: 2119–2132.CrossRefGoogle Scholar
  13. Caudill, C. C., 2003b. Measuring dispersal in a metapopulation using stable isotope enrichment: high rates of sex-biased dispersal between patches in a mayfly metapopulation. Oikos 101: 624–630.CrossRefGoogle Scholar
  14. Caudill, C. C., 2005. Trout predators and demographic sources and sinks in a mayfly metapopulation. Ecology 86: 935–946.CrossRefGoogle Scholar
  15. Chaput-Bardy, A., C. Lemaire, D. Picard & J. Secondi, 2008. In-stream and overland dispersal across a river network influences gene flow in a freshwater insect, Calopteryx splendens. Molecular Ecology 17: 3496–3505.CrossRefPubMedGoogle Scholar
  16. Clarke, A., R. M. Nally, N. Bond & P. S. Lake, 2008. Macroinvertebrate diversity in headwater streams: a review. Freshwater Biology 53: 1707–1721.CrossRefGoogle Scholar
  17. Clement, M., D. Posada & K. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.CrossRefPubMedGoogle Scholar
  18. Crispo, E., P. Bentzen, D. N. Reznick, M. T. Kinnison & A. P. Hendry, 2006. The relative influence of natural selection and geography on gene flow in guppies. Molecular Ecology 15: 49–62.CrossRefPubMedGoogle Scholar
  19. De Block, M., S. Geenen, K. Jordaens, T. Backeljau & R. Stoks, 2005. Spatiotemporal allozyme variation in the damselfly, Lestes viridis (Odonata:Zygoptera): gene flow among permanent and temporary ponds. Genetica 124: 137–144.CrossRefPubMedGoogle Scholar
  20. Doyle, J. & J. Doyle, 1987. A rapid DNA isolation procedure for small quantities of leaf tissue. Phytochemistry Bulletin 19: 11–15.Google Scholar
  21. Engelhardt, C. H. M., S. U. Paul & P. Haase, 2008. Population genetic structure of the caddisfly Rhyacophila pubescens, Pictet 1834, north of the Alps. Fundamental and Applied Limnology 173: 165–176.CrossRefGoogle Scholar
  22. Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.PubMedGoogle Scholar
  23. Finn, D. S. & P. H. Adler, 2006. Population genetic structure of rare high-elevation black fly, Metacnephia coloradensis, occupying Colorado lake outlet streams. Freshwater Biology 51: 2240–2251.CrossRefGoogle Scholar
  24. Finn, D. S., D. M. Theobald, W. Black & N. L. Poff, 2006. Spatial populations genetic structure and limited dispersal in a Rocky Mountain alpine insect. Molecular Ecology 15: 3553–3566.CrossRefPubMedGoogle Scholar
  25. Freeland, J. R., L. R. Noble & B. Okamura, 2000. Genetic consequences of the metapopulation biology of a facultatively sexual freshwater invertebrate. Journal of Evolutionary Biology 13: 383–395.CrossRefGoogle Scholar
  26. Gaggiotti, O. E., S. P. Brooks, W. Amos & J. Harwood, 2004. Combining demographic, environmental and genetic data to test hypotheses about colonizations events in metapopulations. Molecular Ecology 13: 811–825.CrossRefPubMedGoogle Scholar
  27. Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.CrossRefGoogle Scholar
  28. Grether, G. F., D. F. Millie, M. J. Bryant, D. N. Reznick & W. Mayea, 2001. Rain forest canopy cover, resource availability, and life history evolution in guppies. Ecology 82: 1546–1559.CrossRefGoogle Scholar
  29. Guinand, B. & H. Tachet, 2000. Population structure of Hydropsyche exocellata. Genetic homogeneity in a zone of fragmented distribution. Comptes rendus de l’academie des sciences serie III – Sciences de la vie – Life Sciences 323: 757–768.CrossRefGoogle Scholar
  30. Hanski, I., 1991. Single-species metapopulation dynamics: concepts models and observations. Biological Journal of the Linnean Society 42: 17–38.CrossRefGoogle Scholar
  31. Hanski, I. & O. E. Gaggiotti, 2004. Ecology, Genetics, and Evolution of Metapopulations. Elsevier Academic Press, San Diego.Google Scholar
  32. Hastings, A. & S. Harrison, 1994. Metapopulations dynamics and genetics. Annual Review of Ecology and Systematics 25: 167–188.CrossRefGoogle Scholar
  33. Hedin, M. C. & W. P. Maddison, 2001. A combined molecular approach to phylogeny of jumping spider subfamily dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18: 386–403.CrossRefPubMedGoogle Scholar
  34. Hildrew, A. G. & J. M. Edington, 1979. Factors facilitating the coexistence of Hydropsychid caddis larvae (Trichoptera) in the same river system. Journal of Animal Ecology 48: 557–576.CrossRefGoogle Scholar
  35. Hudson, R., 2000. A new statistic for detecting genetic differentiation. Genetics 155: 2011–2014.PubMedGoogle Scholar
  36. Hughes, J. M., 2007. Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams. Freshwater Biology 52: 616–631.CrossRefGoogle Scholar
  37. Hughes, J. M., P. B. Mather, A. L. Shledon & F. W. Allandorf, 1999. Genetic structure of the stonefly, Yoraperla brevis, populations: the extent of gene flow among adjacent montane streams. Freshwater Biology 41: 63–72.CrossRefGoogle Scholar
  38. Hutchinson, G. E., 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? The American Naturalist 93: 145–159.CrossRefGoogle Scholar
  39. Ives, A. R. & M. C. Whitlock, 2002. Inbreeding and metapopulations. Science 295: 454–455.CrossRefPubMedGoogle Scholar
  40. Jump, A. S., J. M. Hunt & J. Peñuelas, 2006. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology 12: 2163–2174.CrossRefGoogle Scholar
  41. Kelly, L. C., S. D. Rundle & D. T. Bilton, 2002. Genetic population structure and dispersal in Atlantic Island caddisflies. Freshwater Biology 47: 1642–1650.CrossRefGoogle Scholar
  42. Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48: 1161–1172.CrossRefGoogle Scholar
  43. Lehrian, S., S. U. Pauls & P. Haase, 2009. Contrasting patterns of population structure in the montane caddisflies Hydropyshe tenuis and Drusus discolor in the Central European highlands. Freshwater Biology 54: 283–295.CrossRefGoogle Scholar
  44. Levin, R., 1983. Santa Rosalia was a goat. Science 221: 636–639.CrossRefGoogle Scholar
  45. Levins, R., 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of Entological Society of America 15: 237–240.Google Scholar
  46. Levins, R., 1970. Extinction. Lectures Mathematics Life Science 2: 75–107.Google Scholar
  47. Luikart, G., P. R. England, D. Tallmon, S. Jordan & P. Taberlet, 2003. The power and promise of population genomics: from genotyping to genome typing. Nature Reviews Genetic 4: 981–994.CrossRefGoogle Scholar
  48. Margalef, R., 1963. On certain unifying principles in ecology. The American Naturalist 97: 357–374.CrossRefGoogle Scholar
  49. Margalef, R., 1972. Homage to Evelyn Hutchinson, or why there is an upper limit to diversity. In Deevey, E. S. (ed.), Growth by Intussusception, Ecological Essays in Honor of G. Evelyn Hutchinson, Vol. 42. The Connecticut Academy of Arts and Science, New Haven, Connecticut: 213–235.Google Scholar
  50. Margalef, R., 1997. Our biosphere. In Kinne, O. (ed.) Excellence in Ecology Series, vol. 10. Ecology Institute, Oldendorf, Germany.Google Scholar
  51. Meffe, G. K. & R. C. Vrijenhoek, 1988. Conservation genetics of desert fishes. Conservation Biology 2: 157–167.CrossRefGoogle Scholar
  52. Müller, K., 1982. The colonization cycle of freshwater insects. Oecologia 52: 202–207.CrossRefGoogle Scholar
  53. Múrria, C. & J. M. Hughes, 2008. Cyclic habitat displacements during Pleistocene glaciations have induced independent evolution of Tasimia palpata populations (Trichoptera: Tasimiidae) in isolated subtropical rain forest patches. Journal of Biogeography 35: 1727–1737.CrossRefGoogle Scholar
  54. Nathan, R., G. Perry, J. T. Cronin, A. E. Strand & M. L. Cain, 2003. Methods for estimating long-distance dispersal. Oikos 103: 261–273.CrossRefGoogle Scholar
  55. Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
  56. Nichols, R. A. & L. M. Freeman, 2004. Using molecular markers with high mutation rates to obtain estimates of relative population size and to distinguish the effects of gene flow and mutation: a demonstration using data from endemic Mauritian skinks. Molecular Ecology 13: 775–787.CrossRefPubMedGoogle Scholar
  57. Pannell, J. R., 2003. Coalescence in a metapopulation with recurrent local extinction and recolonization. Evolution 57: 949–961.PubMedGoogle Scholar
  58. Pannell, J. R. & B. Charlesworth, 2000. Effects of metapopulation processes on measures of genetic diversity. Philosophical Transactions of the Royal Society B 355: 1851–1864.CrossRefGoogle Scholar
  59. Pannell, J. R. & M. E. Dorken, 2006. Colonisation as a common denominator of plant metapopulations and range expansions: effects on genetic diversity and sexual systems. Landscape Ecology 21: 837–848.CrossRefGoogle Scholar
  60. Parker, P. G., A. A. Snow, M. D. Schug, G. C. Booton & P. A. Fuerst, 1998. What molecules can tell us about populations: choosing and using a molecular marker. Ecology 79: 361–382.Google Scholar
  61. Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology and Systematics 37: 637–669.CrossRefGoogle Scholar
  62. Pauls, S. U., K. Theissinger, L. Ujvarosi, M. Balint & P. Haase, 2009. Patterns of population structure in two closely related, partially sympatric caddisflies in Eastern Europe: historic introgression, limited dispersal, and cryptic diversity. Journal of North Amreican Benthological Society 28: 517–536.CrossRefGoogle Scholar
  63. Petersen, I., J. H. Winterbottom, S. Orton, N. Friberg, A. G. Hildrew, D. C. Spiers & W. S. C. Gurney, 1999. Emergence and lateral dispersal of adult Plecoptera and Trichoptera from Broadstone Stream, U.K. Freshwater Biology 42: 401–416.CrossRefGoogle Scholar
  64. Petersen, I., Z. Masters, A. G. Hildrew & S. J. Ormerod, 2004. Dispersal of adult aquatic insects in catchments of differing land use. Journal of Applied Ecology 41: 934–950.CrossRefGoogle Scholar
  65. Plague, G. R. & J. V. McArthur, 1998. Genetic diversity vs geographic distribution of five congeneric caddisflies. Hydrobiologia 362: 1–8.CrossRefGoogle Scholar
  66. Previsic, A., C. Walton, M. Kucinic, P. T. Mitrikeski & M. Kerovec, 2009. Pleistocene divergence of Dinaric Drusus endemics (Trichoptera, Limnephilidae) in multiple microrefugia within the Balkan Peninsula. Molecular Ecology 18: 634–647.CrossRefPubMedGoogle Scholar
  67. Ramos-Onsins, S. E. & J. Rozas, 2002. Statistical properties of new neutrality test against population growth. Molecular Biology and Evolution 19: 2092–2100.PubMedGoogle Scholar
  68. Ros, J. D. & N. Prat (eds), 1991. Homage to Ramon Margalef or why is such pleasure in studying nature. Oecologia Aquatica, Barcelona.Google Scholar
  69. Rozas, J., J. C. Sánchez-Del Barrio, X. Messeguer & R. Rozas, 2003. DNASP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.CrossRefPubMedGoogle Scholar
  70. Salavert, V., C. Zamora-Muñoz, M. Ruiz-Rodríguez, A. Fernández-Cortés & J. J. Soler, 2008. Climatic conditions, diapause and migrations in a troglophile caddisfly. Freshwater Biology 53: 1606–1617.CrossRefGoogle Scholar
  71. Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu & P. Flook, 1994. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and compilation of conserved polymerase chain reactions primers. Annals of the Entomological Society of America 87: 651–701.Google Scholar
  72. Slatkin, M., 1977. Gene flow and genetic drift in a species subject to frequent extinctions. Theoretical Population Biology 12: 253–262.CrossRefPubMedGoogle Scholar
  73. Slatkin, M., 1985. Gene flow in natural populations. Annual Review of Ecology and Systematics 16: 393–430.CrossRefGoogle Scholar
  74. Staden, R., 1996. The Staden sequence analysis package. Molecular Biotechnology 5: 233–241.CrossRefPubMedGoogle Scholar
  75. Stefanescu, C., J. Peñuelas & I. Filella, 2003. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Global Change Biology 9: 1494–1506.CrossRefGoogle Scholar
  76. Tachet, H., J. P. Pierrot, C. Roux & M. Bournaud, 1992. Net-building behaviour of six Hydropsyche species (Trichoptera) in relation to current velocity and distribution along the Rhône River. Journal of the North American Benthological Society 11: 350–365.CrossRefGoogle Scholar
  77. Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polaterra, 2000. Invertébrés d’eau douce. Systématique, biologie, écologie. CNRS Editions, Paris.Google Scholar
  78. Wakeley, J., 2004. Metapopulations and coalescent theory. In Hanski, I. & O. E. Gaggiotti (eds), Ecology, Genetics, and Evolution of Metapopulations. Elsevier Academic Press, San Diego: 175–198.CrossRefGoogle Scholar
  79. Wilcock, H. R., A. G. Hildrew & R. A. Nichols, 2001. Genetic differentiation of a European caddisfly: past and present gene flow among fragmented larval habitats. Molecular Ecology 10: 1821–1834.CrossRefPubMedGoogle Scholar
  80. Wilcock, H. R., M. W. Bruford, R. A. Nichols & A. G. Hildrew, 2007. Landscape, habitat characteristics and the genetic populations structure of two caddisflies. Freshwater Biology 52: 1907–1929.CrossRefGoogle Scholar
  81. Williams, D. D., 2006. The Biology of Temporary Waters. Oxford University Press, New York.Google Scholar
  82. Williams, D. D. & N. E. Williams, 1993. The upstream/downstream movement paradox of lotic invertebrates: quantitative evidence from a Welsh mountain stream. Freshwater Biology 30: 199–218.CrossRefGoogle Scholar
  83. Wright, S., 1940. Breeding structure of populations in relation to speciation. The American Naturalist 74: 232–248.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Cesc Múrria
    • 1
    • 3
    Email author
  • Núria Bonada
    • 1
  • Carles Ribera
    • 2
  • Narcís Prat
    • 1
  1. 1.Departament d’EcologiaUniversitat de BarcelonaBarcelonaCatalonia
  2. 2.Departament de Biologia AnimalUniversitat de BarcelonaBarcelonaCatalonia
  3. 3.Department of EntomologyNatural History MuseumLondonUK

Personalised recommendations