Advertisement

Hydrobiologia

, Volume 653, Issue 1, pp 165–177 | Cite as

Homage to Hutchinson: does inter-annual climate variability affect zooplankton density and diversity?

  • Nicholas D. Preston
  • James A. Rusak
SANTA ROSALIA 50 YEARS ON

Abstract

G. Evelyn Hutchinson proposed that external control by climate limits the fundamental productivity and the possible diversity of ecological communities. These climatic drivers are currently changing as a result of human activity, which may herald a shift in the influence of climate on global ecosystems. Long-term records reveal a reduction in ice cover on northern lakes over the last several centuries. Hence, we explore whether inter-annual climatic variability, represented by ice cover, influences the productivity and diversity of zooplankton communities in long-term datasets for five lakes in Northern Wisconsin. We used a multilevel modeling approach to test three predictions: (1) density will increase, (2) diversity will increase, and (3) community composition will be altered. We found an inverse relationship between ice-off date and annual zooplankton density. Daphnia density, for example, was inversely related to ice-off date, with 10-fold variability across the gradient of ice-off dates in Northern Wisconsin. In contrast, we did not observe a consistent shift in diversity or community structure. Thus, from ice cover records of northern lakes we found support for Hutchinson’s idea that external climatic forces may regulate aquatic productivity; however, the response was numeric and we did not find evidence that lakes moved closer to maximum diversity on an inter-annual scale.

Keywords

Zooplankton Climate Ice phenology Multilevel modeling LTER 

Notes

Acknowledgments

We thank the National Science Foundation (NSF) for support of the North Temperate Lakes Long-Term Ecological Research site (DEB 0217533) and the staff of the Trout Lake field station for research support. Two reviewers provided constructive comments that improved this manuscript. This paper is a contribution to the Center for Limnology at the University of Wisconsin-Madison.

References

  1. Adrian, R., S. Wilhelm & D. Gerten, 2006. Life-history traits of lake plankton species may govern their phenological response to climate warming. Global Change Biology 12: 652–661.CrossRefGoogle Scholar
  2. Arai, T., 2000. The hydro-climatological significance of long-term ice records of Lake Suwa, Japan. Verhandlungen Internationale Vereinigung für Limnologie 27: 2757–2760.Google Scholar
  3. Balayla, D., T. L. Lauridsen, M. Sondergaard & E. Jeppesen, 2010. Larger zooplankton in Danish lakes after cold winters: are winter fish kills of importance? Hydrobiologia 646: 159–172.CrossRefGoogle Scholar
  4. Blenckner, T., K. Pettersson & J. Padisak, 2002. Lake plankton as a tracer to discover climate signals. Verhandlungen Internationale Vereinigung für Limnologie 28: 1324–1327.Google Scholar
  5. Gelman, A. & J. Hill, 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge.Google Scholar
  6. Gerten, D. & R. Adrian, 2002. Effects of climate warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on thermal conditions and plankton dynamics in northern hemispheric lakes. The Scientific World Journal 2: 586–606.Google Scholar
  7. Hurlbert, S. H., 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52: 577–586.CrossRefGoogle Scholar
  8. Hutchinson, G. E., 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.Google Scholar
  9. Hutchinson, G. E., 1959. Why are there so many kinds of animals? The American Naturalist 93: 145–159.CrossRefGoogle Scholar
  10. Jensen, O. P., B. J. Benson, J. J. Magnuson, V. M. Card, M. N. Futter, P. A. Soranno & K. M. Stewart, 2007. Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnology and Oceanography 52: 2013–2026.Google Scholar
  11. Kratz, T. K., B. P. Hayden, B. J. Benson & W. Y. B. Chang, 2000. Patterns in the interannual variability of lake freeze and thaw dates. Verhandlungen Internationale Vereinigung für Limnologie 27: 2796–2799.Google Scholar
  12. Kreft, I. & J. De Leeuw, 1998. Introducing Multilevel Modeling. Sage, London.Google Scholar
  13. Lunn, D. J., A. Thomas, N. Best & D. Spiegelhalter, 2000. WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10: 325–337.CrossRefGoogle Scholar
  14. MacArthur, R. H., 1955. Fluctuations of animal populations and a measure of community stability. Ecology 35: 533–536.CrossRefGoogle Scholar
  15. Magnuson, J., B. J. Benson & T. Kratz, 1990. Temporal coherence in the limnology of a suite of lakes in Wisconsin. U.S.A. Freshwater Biology 23: 145–149.CrossRefGoogle Scholar
  16. Magnuson, J., D. Robertson, B. J. Benson, R. Wynne, D. Livingstone, T. Arai, R. Assel, R. Barry, V. Card, E. Kuusisto, N. Granin, T. Prowse, K. Stewart & V. Vuglinski, 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289: 1743–1746.CrossRefPubMedGoogle Scholar
  17. Magnuson, J. J., B. J. Benson, O. P. Jensen, T. B. Clark, V. Card, M. N. Futter, P. A. Soranno & K. M. Stewart, 2005. Persistence of coherence of ice-off dates for inland lakes across the Laurentian Great Lakes region. Verhandlungen Internationale Vereinigung für Limnologie 29: 521–527.Google Scholar
  18. Magnuson, J. J., T. K. Kratz & B. J. Benson, 2006. Long-Term Dynamics of Lakes in the Landscape: Long-Term Ecological Research on North Temperate Lakes. Oxford University Press, New York.Google Scholar
  19. Moore, M. V., C. L. Folt & R. S. Stemberger, 1996. Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Archiv für Hydrobiologie 135: 289–319.Google Scholar
  20. Moran, P. A. P., 1953. The statistical analysis of the Canadian lynx cycle. II Synchronization and meteorology. Australian Journal of Zoology 1: 291–298.CrossRefGoogle Scholar
  21. NTLLTERP, 2009a. Ice Duration – Trout Lake Area, North Temperate Lakes Long Term Ecological Research program (http://lter.limnology.wisc.edu) [accessed 01 Sept 2009], NSF, NTL LTER Lead PI, Center for Limnology, University of Wisconsin-Madison.
  22. NTLLTERP, 2009b. Plankton – Trout Lake Area, North Temperate Lakes Long Term Ecological Research program (http://lter.limnology.wisc.edu) [accessed 01 Sept 2009], NSF, NTL LTER Lead PI, Center for Limnology, University of Wisconsin-Madison.
  23. NTLLTERP, 2009c. Zooplankton Procedures: Trout Lake Area, North Temperate Lakes Long Term Ecological Research program (http://lter.limnology.wisc.edu) [accessed 01 Sept 2009], NSF, NTL LTER Lead PI, Center for Limnology, University of Wisconsin-Madison.
  24. Odum, E. P., 1953. Fundamentals of ecology. W.B. Saunders Co, Philadelphia, PA.Google Scholar
  25. Pielou, E. C., 1975. Ecological Diversity. Wiley, New York.Google Scholar
  26. Regier, H. A. & J. D. Meisner, 1990. Anticipated effects of climate change on fresh-water fishes and their habitat. Fisheries 15: 10–15.CrossRefGoogle Scholar
  27. Reynolds, C., 1984. Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  28. Rusak, J. A. & P. K. Montz, 2009. Sampling Requirements and the Implications of Reduced Sampling Effort for the Estimation of Annual Zooplankton Population and Community Dynamics in North Temperate Lakes. Limnology and Oceanography: Methods 7: 535–544.Google Scholar
  29. Rusak, J. A., N. D. Yan, K. M. Somers, K. L. Cottingham, F. Micheli, S. R. Carpenter, T. M. Frost, M. J. Paterson & D. J. McQueen, 2002. Temporal, spatial, and taxonomic patterns of crustacean zooplankton variability in unmanipulated north-temperate lakes. Limnology and Oceanography 47: 613–625.CrossRefGoogle Scholar
  30. Rusak, J. A., N. D. Yan & K. M. Somers, 2008. Regional climatic drivers of synchronous zooplankton dynamics in north-temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences 65: 878–889.CrossRefGoogle Scholar
  31. Ruuhijärvi, J., M. Rask, S. Vesala, A. Westermark, M. Olin, J. Keskitalo & A. Lehtovaara, 2010. Recovery of the fish community and changes in the lower trophic levels in a eutrophic lake after a winter kill of fish. Hydrobiologia 646: 145–158.CrossRefGoogle Scholar
  32. Schindler, D. E., D. E. Rogers, M. D. Scheuerell & C. A. Abrey, 2005. Effects of changing climate on zooplankton and juvenile sockeye salmon growth in southwestern Alaska. Ecology 86: 198–209.CrossRefGoogle Scholar
  33. Sommer, U., Z. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv Für Hydrobiologie 106: 433–471.Google Scholar
  34. Straile, D. & R. Adrian, 2000. The North Atlantic Oscillation and plankton dynamics in two European lakes–two variations on a general theme. Global Change Biology 6: 663–670.CrossRefGoogle Scholar
  35. Straile, D., K. John & H. Rossknecht, 2003. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnology and Oceanography 48: 1432–1438.CrossRefGoogle Scholar
  36. Weyhenmeyer, G. A., T. Blenckner & K. Pettersson, 1999. Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnology and Oceanography 44: 1788–1792.CrossRefGoogle Scholar
  37. Weyhenmeyer, G., R. Adrian, U. Gaedke, D. M. Livingstone & S. C. Maberly, 2002. Response of phytoplankton in European lakes to a change in the North Atlantic Oscillation. Verhandlungen Internationale Vereinigung für Limnologie 28: 1436–1439.Google Scholar
  38. Winder, M. & D. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.CrossRefGoogle Scholar
  39. Wynne, R. H., 2001. Statistical Modelling of Lake Ice Phenology: Issues and Implications. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart (FRG).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Center for LimnologyUniversity of WisconsinMadisonUSA
  2. 2.Dorset Environmental Science CentreDorsetCanada

Personalised recommendations