, Volume 653, Issue 1, pp 165–177 | Cite as

Homage to Hutchinson: does inter-annual climate variability affect zooplankton density and diversity?

  • Nicholas D. Preston
  • James A. Rusak


G. Evelyn Hutchinson proposed that external control by climate limits the fundamental productivity and the possible diversity of ecological communities. These climatic drivers are currently changing as a result of human activity, which may herald a shift in the influence of climate on global ecosystems. Long-term records reveal a reduction in ice cover on northern lakes over the last several centuries. Hence, we explore whether inter-annual climatic variability, represented by ice cover, influences the productivity and diversity of zooplankton communities in long-term datasets for five lakes in Northern Wisconsin. We used a multilevel modeling approach to test three predictions: (1) density will increase, (2) diversity will increase, and (3) community composition will be altered. We found an inverse relationship between ice-off date and annual zooplankton density. Daphnia density, for example, was inversely related to ice-off date, with 10-fold variability across the gradient of ice-off dates in Northern Wisconsin. In contrast, we did not observe a consistent shift in diversity or community structure. Thus, from ice cover records of northern lakes we found support for Hutchinson’s idea that external climatic forces may regulate aquatic productivity; however, the response was numeric and we did not find evidence that lakes moved closer to maximum diversity on an inter-annual scale.


Zooplankton Climate Ice phenology Multilevel modeling LTER 



We thank the National Science Foundation (NSF) for support of the North Temperate Lakes Long-Term Ecological Research site (DEB 0217533) and the staff of the Trout Lake field station for research support. Two reviewers provided constructive comments that improved this manuscript. This paper is a contribution to the Center for Limnology at the University of Wisconsin-Madison.


  1. Adrian, R., S. Wilhelm & D. Gerten, 2006. Life-history traits of lake plankton species may govern their phenological response to climate warming. Global Change Biology 12: 652–661.CrossRefGoogle Scholar
  2. Arai, T., 2000. The hydro-climatological significance of long-term ice records of Lake Suwa, Japan. Verhandlungen Internationale Vereinigung für Limnologie 27: 2757–2760.Google Scholar
  3. Balayla, D., T. L. Lauridsen, M. Sondergaard & E. Jeppesen, 2010. Larger zooplankton in Danish lakes after cold winters: are winter fish kills of importance? Hydrobiologia 646: 159–172.CrossRefGoogle Scholar
  4. Blenckner, T., K. Pettersson & J. Padisak, 2002. Lake plankton as a tracer to discover climate signals. Verhandlungen Internationale Vereinigung für Limnologie 28: 1324–1327.Google Scholar
  5. Gelman, A. & J. Hill, 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge.Google Scholar
  6. Gerten, D. & R. Adrian, 2002. Effects of climate warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on thermal conditions and plankton dynamics in northern hemispheric lakes. The Scientific World Journal 2: 586–606.Google Scholar
  7. Hurlbert, S. H., 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52: 577–586.CrossRefGoogle Scholar
  8. Hutchinson, G. E., 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.Google Scholar
  9. Hutchinson, G. E., 1959. Why are there so many kinds of animals? The American Naturalist 93: 145–159.CrossRefGoogle Scholar
  10. Jensen, O. P., B. J. Benson, J. J. Magnuson, V. M. Card, M. N. Futter, P. A. Soranno & K. M. Stewart, 2007. Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnology and Oceanography 52: 2013–2026.Google Scholar
  11. Kratz, T. K., B. P. Hayden, B. J. Benson & W. Y. B. Chang, 2000. Patterns in the interannual variability of lake freeze and thaw dates. Verhandlungen Internationale Vereinigung für Limnologie 27: 2796–2799.Google Scholar
  12. Kreft, I. & J. De Leeuw, 1998. Introducing Multilevel Modeling. Sage, London.Google Scholar
  13. Lunn, D. J., A. Thomas, N. Best & D. Spiegelhalter, 2000. WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10: 325–337.CrossRefGoogle Scholar
  14. MacArthur, R. H., 1955. Fluctuations of animal populations and a measure of community stability. Ecology 35: 533–536.CrossRefGoogle Scholar
  15. Magnuson, J., B. J. Benson & T. Kratz, 1990. Temporal coherence in the limnology of a suite of lakes in Wisconsin. U.S.A. Freshwater Biology 23: 145–149.CrossRefGoogle Scholar
  16. Magnuson, J., D. Robertson, B. J. Benson, R. Wynne, D. Livingstone, T. Arai, R. Assel, R. Barry, V. Card, E. Kuusisto, N. Granin, T. Prowse, K. Stewart & V. Vuglinski, 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289: 1743–1746.CrossRefPubMedGoogle Scholar
  17. Magnuson, J. J., B. J. Benson, O. P. Jensen, T. B. Clark, V. Card, M. N. Futter, P. A. Soranno & K. M. Stewart, 2005. Persistence of coherence of ice-off dates for inland lakes across the Laurentian Great Lakes region. Verhandlungen Internationale Vereinigung für Limnologie 29: 521–527.Google Scholar
  18. Magnuson, J. J., T. K. Kratz & B. J. Benson, 2006. Long-Term Dynamics of Lakes in the Landscape: Long-Term Ecological Research on North Temperate Lakes. Oxford University Press, New York.Google Scholar
  19. Moore, M. V., C. L. Folt & R. S. Stemberger, 1996. Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Archiv für Hydrobiologie 135: 289–319.Google Scholar
  20. Moran, P. A. P., 1953. The statistical analysis of the Canadian lynx cycle. II Synchronization and meteorology. Australian Journal of Zoology 1: 291–298.CrossRefGoogle Scholar
  21. NTLLTERP, 2009a. Ice Duration – Trout Lake Area, North Temperate Lakes Long Term Ecological Research program ( [accessed 01 Sept 2009], NSF, NTL LTER Lead PI, Center for Limnology, University of Wisconsin-Madison.
  22. NTLLTERP, 2009b. Plankton – Trout Lake Area, North Temperate Lakes Long Term Ecological Research program ( [accessed 01 Sept 2009], NSF, NTL LTER Lead PI, Center for Limnology, University of Wisconsin-Madison.
  23. NTLLTERP, 2009c. Zooplankton Procedures: Trout Lake Area, North Temperate Lakes Long Term Ecological Research program ( [accessed 01 Sept 2009], NSF, NTL LTER Lead PI, Center for Limnology, University of Wisconsin-Madison.
  24. Odum, E. P., 1953. Fundamentals of ecology. W.B. Saunders Co, Philadelphia, PA.Google Scholar
  25. Pielou, E. C., 1975. Ecological Diversity. Wiley, New York.Google Scholar
  26. Regier, H. A. & J. D. Meisner, 1990. Anticipated effects of climate change on fresh-water fishes and their habitat. Fisheries 15: 10–15.CrossRefGoogle Scholar
  27. Reynolds, C., 1984. Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  28. Rusak, J. A. & P. K. Montz, 2009. Sampling Requirements and the Implications of Reduced Sampling Effort for the Estimation of Annual Zooplankton Population and Community Dynamics in North Temperate Lakes. Limnology and Oceanography: Methods 7: 535–544.Google Scholar
  29. Rusak, J. A., N. D. Yan, K. M. Somers, K. L. Cottingham, F. Micheli, S. R. Carpenter, T. M. Frost, M. J. Paterson & D. J. McQueen, 2002. Temporal, spatial, and taxonomic patterns of crustacean zooplankton variability in unmanipulated north-temperate lakes. Limnology and Oceanography 47: 613–625.CrossRefGoogle Scholar
  30. Rusak, J. A., N. D. Yan & K. M. Somers, 2008. Regional climatic drivers of synchronous zooplankton dynamics in north-temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences 65: 878–889.CrossRefGoogle Scholar
  31. Ruuhijärvi, J., M. Rask, S. Vesala, A. Westermark, M. Olin, J. Keskitalo & A. Lehtovaara, 2010. Recovery of the fish community and changes in the lower trophic levels in a eutrophic lake after a winter kill of fish. Hydrobiologia 646: 145–158.CrossRefGoogle Scholar
  32. Schindler, D. E., D. E. Rogers, M. D. Scheuerell & C. A. Abrey, 2005. Effects of changing climate on zooplankton and juvenile sockeye salmon growth in southwestern Alaska. Ecology 86: 198–209.CrossRefGoogle Scholar
  33. Sommer, U., Z. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv Für Hydrobiologie 106: 433–471.Google Scholar
  34. Straile, D. & R. Adrian, 2000. The North Atlantic Oscillation and plankton dynamics in two European lakes–two variations on a general theme. Global Change Biology 6: 663–670.CrossRefGoogle Scholar
  35. Straile, D., K. John & H. Rossknecht, 2003. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnology and Oceanography 48: 1432–1438.CrossRefGoogle Scholar
  36. Weyhenmeyer, G. A., T. Blenckner & K. Pettersson, 1999. Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnology and Oceanography 44: 1788–1792.CrossRefGoogle Scholar
  37. Weyhenmeyer, G., R. Adrian, U. Gaedke, D. M. Livingstone & S. C. Maberly, 2002. Response of phytoplankton in European lakes to a change in the North Atlantic Oscillation. Verhandlungen Internationale Vereinigung für Limnologie 28: 1436–1439.Google Scholar
  38. Winder, M. & D. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.CrossRefGoogle Scholar
  39. Wynne, R. H., 2001. Statistical Modelling of Lake Ice Phenology: Issues and Implications. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart (FRG).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Center for LimnologyUniversity of WisconsinMadisonUSA
  2. 2.Dorset Environmental Science CentreDorsetCanada

Personalised recommendations