Hydrobiologia

, Volume 652, Issue 1, pp 49–56 | Cite as

Strong influence of microhabitat on survival for an intertidal snail, Nucella lima

Primary research paper

Abstract

Within a population, survival can vary widely among individuals based upon numerous aspects of the phenotype, including (but not limited to) age, size, and habitat use. We examined the role of microhabitat use, individual color, and length, in explaining within-population variation in survival for an intertidal snail, Nucella lima. We used a multi-state capture–mark–recapture approach to determine survival and movement rates and found that favored models constrained survival to be a function of microhabitat. Survival estimates from the best-fit model were different between habitat types, despite the fact that habitats were immediately adjacent. Fidelity and disproportionate movement into the habitat with the highest survival suggested possible adaptive habitat choice. This study highlights the importance of small-scale variation in influencing population vital rates, as well as the need for quantifying within-population heterogeneity in survival.

Keywords

Survival Microhabitat Within-population heterogeneity Nucella lima Movement 

References

  1. Anderson, D. R., 2008. Model Based Inference in the Life Sciences: A Primer on Evidence. Springer, New York.CrossRefGoogle Scholar
  2. Anderson, M. G., M. S. Lindberg & R. B. Emery, 2001. Probability of survival and breeding juvenile female canvasbacks. Journal of Wildlife Management 65: 385–387.CrossRefGoogle Scholar
  3. Blums, P., J. D. Nichols, J. E. Hines, M. S. Lindberg & A. Mednis, 2005. Individual quality, survival variation, and patterns of phenotypic selection on body condition and timing of nesting in birds. Oecologia 143: 365–376.CrossRefPubMedGoogle Scholar
  4. Brownie, C., J. E. Hines, J. D. Nichols, K. H. Pollock & J. B. Hestbeck, 1993. Capture-recapture studies for multiple strata including non-markovian transitions. Biometrics 49: 1173–1187.CrossRefGoogle Scholar
  5. Cain, A. J. & P. M. Sheppard, 1950. Selection in the polymorphic land snail Cepæa nemoraus. Heredity 4: 275–294.CrossRefPubMedGoogle Scholar
  6. Cam, E., W. A. Link, E. G. Cooch, J. Y. Monnat & E. Danchin, 2002. Individual covariation in life-history traits: seeing the trees despite the forest. The American Naturalist 159: 96–2005.CrossRefPubMedGoogle Scholar
  7. Cam, E., J. Y. Monnat & J. A. Royle, 2004. Dispersal and individual quality in a long lived species. Oikos 106: 386–398.CrossRefGoogle Scholar
  8. Carroll, M. L. & R. C. Highsmith, 1996. Role of catastrophic disturbance in mediating Nucella-Mytilus interactions in the rocky intertidal. Marine Ecology Progress Series 138: 125–133.CrossRefGoogle Scholar
  9. Caswell, H., 2001. Matrix Population Models. Sinauer Associates, Sunderland, MA.Google Scholar
  10. Cooch, E. G., E. Cam & W. A. Link, 2002. Occam’s shadow: levels of analysis in evolutionary ecology—where to next? Journal of Applied Statistics 29: 19–48.CrossRefGoogle Scholar
  11. Etter, R. J., 1988. Physiological stress and color polymorphism in the intertidal snail Nucella lapillus. Evolution 42: 660–680.CrossRefGoogle Scholar
  12. Etter, R. J., 1989. Life history variation in the intertidal snail Nucella lapillus across a wave-exposure gradient. Ecology 70: 1857–1876.CrossRefGoogle Scholar
  13. Haldane, J. B. S., 1932. The Causes of Evolution. Harper & Brothers Publishers, New York, NY.Google Scholar
  14. Hughes, T. P., 1984. Population dynamics based on individual size rather than age: a general model with a reef coral example. The American Naturalist 123: 778–795.CrossRefGoogle Scholar
  15. Ioannou, C. C. & J. Krause, 2009. Interactions between background matching and motion during visual detection can explain why cryptic animals keep still. Biology Letters 5: 191–193.PubMedGoogle Scholar
  16. Joe, M. & K. H. Pollock, 2002. Separation of survival and movement rates in multi-state capture-recapture models. Journal of Applied Statistics 29: 373–384.CrossRefGoogle Scholar
  17. Johannesson, K. & A. Ekendahl. 2002. Selective predation favoring cryptic individuals of snails (Littorina). Biological Journal of the Linnean Society 76: 137–144.CrossRefGoogle Scholar
  18. Johnson, M. S. & R. Black, 2008. Effects of contrasting tidal habitats on growth, survivorship and dispersal in an intertidal snail. Journal of Experimental Biology and Ecology 363: 96–103.CrossRefGoogle Scholar
  19. Jones, K. M. M. & E. G. Boulding, 1999. State-dependent habitat selection by an intertidal snail: the costs of selecting a physically stressful microhabitat. Journal of Experimental Marine Biology and Ecology 242: 149–177.Google Scholar
  20. Lebreton, J. D., K. P. Burnham, J. Clobert & D. R. Anderson, 1992. Modeling survival and biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs 62: 67–118.CrossRefGoogle Scholar
  21. Link, W. A., E. G. Cooch & E. Cam, 2002. Model based estimation of individual fitness. Journal of Applied Statistics 29: 207–224.CrossRefGoogle Scholar
  22. Main, K. L., 1987. Predator avoidance in seagrass meadows: prey behavior, microhabitat selection, and cryptic coloration. Ecology 68: 170–180.CrossRefGoogle Scholar
  23. Martin, T. E., 1998. Are microhabitat preferences of coexisting species under selection and adaptive? Ecology 79: 656–670.CrossRefGoogle Scholar
  24. Martin, T. E. & J. J. Roper, 1988. Nest predation and nest-site selection of a Western population of the hermit thrush. The Condor 90: 51–57.CrossRefGoogle Scholar
  25. Moran, A. L. & R. B. Emlet, 2001. Offspring size and performance in variable environments: field studies on a marine snail. Ecology 82: 1597–1612.CrossRefGoogle Scholar
  26. Morris, W. F. & D. F. Doak, 2002. Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sinauer Associates, Sunderland, MA.Google Scholar
  27. Nichols, J. D. & W. L. Kendall, 1995. The use of multi-state capture-recapture models to address questions in evolutionary ecology. Journal of Applied Statistics 22: 835–846.CrossRefGoogle Scholar
  28. Noda, T., 1999. Within- and between- patch variability of predation intensity on the mussel Mytilus trossulus Gould on a rocky intertidal shore in Oregon, USA. Ecological Research 14: 193–203.CrossRefGoogle Scholar
  29. Palmer, A. R., 1985. Genetic basis of shell variation in Thais emarginata (Prosobranchia, muricacea). I. Banding in populations from Vancouver Island. The Biological Bulletin 169: 638–651.CrossRefGoogle Scholar
  30. Quinn, T. P., 2005. The Behavior and Ecology of Pacific Salmon and Trout. University of Washington Press, Seattle.Google Scholar
  31. Ryer, C. H., J. L. Lemke, K. Boersma & S. Levas, 2008. Adaptive coloration, behavior and predation vulnerability in three juvenile north Pacific flatfishes. Journal of Experimental Marine Biology and Ecology 359: 62–66.CrossRefGoogle Scholar
  32. Sheppard, P. M., 1951. Fluctuations in the selective value of certain phenotypes in the polymorphic land snail Cepæa nemoraus. Heredity 5: 125–134.CrossRefPubMedGoogle Scholar
  33. Stevens, M., C. A. Parraga, I. C. Cuthill, J. C. Partridge & T. S. Troscianko, 2007. Using digital photography to study animal coloration. Biological Journal of the Linnean Society 90: 211–237.CrossRefGoogle Scholar
  34. Tallmon, D. A., E. S. Jules, N. J. Radke & L. S. Mills, 2003. Of mice and men and trillium: cascading effects of forest fragmentation. Ecological Applications 13: 1193–1203.CrossRefGoogle Scholar
  35. White, G. C. & K. P. Burnham, 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46(Supplement): 120–138.Google Scholar
  36. Whiteley, A. R., S. M. Gende, A. J. Gharrett & D. A. Tallmon, 2009. Background matching and color change plasticity in colonizing freshwater sculpin populations following rapid deglaciation. Evolution 63: 1519–1529.CrossRefPubMedGoogle Scholar
  37. Wootton, J. T., 2002. Mechanisms of successional dynamics: consumers and the rise and fall of species dominance. Ecological Research 17: 249–260.CrossRefGoogle Scholar
  38. Zach, R., 1978. Selection and dropping of whelks by Northwestern crows. Behaviour 67: 134–147.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Biology and Wildlife Department, Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksUSA
  2. 2.Biology and Marine BiologyUniversity of Alaska SoutheastJuneauUSA

Personalised recommendations