, Volume 659, Issue 1, pp 65–79 | Cite as

Potential role of fungi in plankton food web functioning and stability: a simulation analysis based on Lake Biwa inverse model

  • Nathalie NiquilEmail author
  • Maiko Kagami
  • Jotaro Urabe
  • Urania Christaki
  • Eric Viscogliosi
  • Télesphore Sime-Ngando


Recent investigations of molecular diversity in the plankton of lakes and coastal lagoons have detected an unexpected diversity of fungi including chytrids. Microscopic observations have provided evidence for the presence of two main forms. The sporangia are implied in algal parasitism. The propagules, i.e. uniflagellated zoospores, may constitute an alternate resource for consumers. These results suggest a need to reconsider the concept of plankton food web functioning. In order to describe the potential role of fungi in food web functioning, we revisit the model of carbon flows in the photic zone of the North basin of Lake Biwa in summer, established using the inverse analysis method for estimating missing flow values. In the absence of quantification of the flows induced by fungal activity, simulations are realised of their potential role in the plankton food web. Different rates of parasitism of micro-phytoplankton are tested, with a return of this carbon to the consumer via the consumption of zoospores by mesozooplankton and, at a lower rate, microzooplankton. The presence of this indirect pathway channelling micro-phytoplankton production to the consumers via the fungi, leads to the following trends: (i) an enhancement of the trophic efficiency index, (ii) a decrease of the ratio detritivory/herbivory, (iii) a decrease of the percentage of carbon flowing in cyclic pathways, and (iv) an increase in the relative ascendency of the system. Relative ascendency, which indicates pathways more specialised and less redundant, is related to theories linking food web patterns and stability. A high ascendency in the plankton food web (low trophic level), if connected to a food web of high redundancy at higher trophic levels (e.g. nekton food web) would fit well to the stabilising pattern called structural asymmetry, considered a stability criterion. More precise models, taking into account the species diversity of fungi and the high specificity of their parasitism on the micro-phytoplankton, would further accentuate this observation.


Food web Parasites Plankton Inverse model Ecological network analysis 



The authors thank the DREP project from the French ANR program for financial support of this study, George A Jackson for providing the source Matlab© program, Robert E Ulanowicz for the Netwrk 4.2 program used, the 2 anonymous reviewers for their useful remarks and Galen A. Johnson for correcting English.


  1. Arias-Gonzalez, J. E. & S. Morand, 2006. Trophic functioning with parasites: a new insight for ecosystem analysis. Marine Ecology Progress Series 320: 43–53.CrossRefGoogle Scholar
  2. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.CrossRefGoogle Scholar
  3. Baird, D. & R. E. Ulanowicz, 1989. The seasonal dynamics of the Chesapeake Bay ecosystem. Ecological Monographs 59: 329–364.CrossRefGoogle Scholar
  4. Doggett, M. S. & D. Porter, 1995. Further evidence for host-specific variants in Zygorhizidium planktonicum. Mycologia 87: 161–171.CrossRefGoogle Scholar
  5. Fath, B. D., U. Scharler, R. E. Ulanowicz & B. Hannon, 2007. Ecological network analysis: network construction. Ecological Modelling 208: 49–55.CrossRefGoogle Scholar
  6. Fenton, A. & M. A. Brockhurst, 2008. The role of specialist parasites in structuring host communities. Ecological Research 23: 795–804.CrossRefGoogle Scholar
  7. Finn, J. T., 1976. Measures of ecosystem structure and function derived from analysis of flows. Journal of Theoretical Biology 56: 363–380.CrossRefPubMedGoogle Scholar
  8. Freeland, W. J. & W. J. Boulton, 1992. Coevolution of food webs: parasites, predators and plant secondary compounds. Biotropica 24: 309–327.CrossRefGoogle Scholar
  9. Fuhrman, J. A., 1999. Marine viruses and their biogeochemical and ecological effects. Nature 399: 541–548.CrossRefPubMedGoogle Scholar
  10. Gaedke, U. & D. Straile, 1994. Seasonal changes of trophic transfer efficiencies in a plankton food web derived from biomass size distributions and network analysis. Ecological Modelling 75–76: 435–445.CrossRefGoogle Scholar
  11. Gleason, F. H., M. Kagami, E. Lefevre & T. Sime-Ngando, 2008. The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biology Reviews 22: 17–25.CrossRefGoogle Scholar
  12. Hudson, P. J., A. P. Dobson & K. D. Lafferty, 2006. Is a healthy ecosystem one that is rich in parasites? Trends in Ecology and Evolution 21: 381–385.CrossRefPubMedGoogle Scholar
  13. Ibelings, B. W., A. De Bruin, M. Kagami, M. Rijkeboer, M. Brehm & E. Van Donk, 2004. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). Journal of Phycology 40: 437–453.CrossRefGoogle Scholar
  14. Kagami, M., T. Yoshida, T. B. Gurung & J. Urabe, 2002. Direct and indirect effects of zooplankton on algal composition in in situ grazing experiments. Oecologia 133: 356–363.CrossRefGoogle Scholar
  15. Kagami, M., E. Van Donk, A. De Bruin, M. Rijkeboer & B. W. Ibelings, 2004. Daphnia can protect diatoms from fungal parasitism. Limnology and Oceanography 49: 680–685.CrossRefGoogle Scholar
  16. Kagami, M., B. W. Ibelings, A. de Bruin & E. Van Donk, 2005. Vulnerability of Asterionella Formosa to Daphnia grazing: the impact of a fungal parasite. Verhandlungen: Internationale Vereinigung fur Theoretische und Angewandte Limnologie 29: 350–354.Google Scholar
  17. Kagami, M., T. B. Gurung, T. Yoshida & J. Urabe, 2006. To sink or to be lysed? Contrasting fate of two large phytoplankton species in Lake Biwa. Limnology and Oceanography 51: 2775–2786.CrossRefGoogle Scholar
  18. Kagami, M., A. De Bruin, B. W. Ibelings & E. Van Donk, 2007a. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578: 113–129.CrossRefGoogle Scholar
  19. Kagami, M., E. Von Elert, B. W. Ibelings, A. De Bruin & E. Van Donk, 2007b. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proceedings of the Royal Society B: Biological Sciences 274: 1561–1566.CrossRefPubMedGoogle Scholar
  20. Kay, J. J., L. A. Graham & R. E. Ulanowicz, 1989. A detailed guide to network analysis. In Wulff, F., J. G. Field & K. H. Mann (eds), Network Analysis in Marine Ecology: Methods and Applications. Springer-Verlag, Heidelberg: 15–61.Google Scholar
  21. Kones, J. K., K. Soetaert, D. van Oevelen & J. O. Owino, 2009. Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecological Modelling 220: 370–382.CrossRefGoogle Scholar
  22. Lafferty, K. D. & A. M. Kuris, 2009. Parasites reduce food web robustness because they are sensitive to secondary extinction as illustrated by an invasive estuarine snail. Philosophical Transactions of the Royal Society Biological Sciences 364: 1659–1663.CrossRefPubMedGoogle Scholar
  23. Lafferty, K. D., S. Allesina, M. Arim, C. J. Briggs, G. DeLeo, A. P. Dobson, J. A. Dunne, P. T. Johnson, A. M. Kuris, D. J. Marcogliese, N. D. Martinez, J. Memmott, P. A. Marquet, J. P. McLaughlin, E. A. Mordecai, M. Pascual, R. Poulin & D. W. Thieltges, 2008. Parasites in food webs: the ultimate missing links. Ecology Letters 11: 533–546.CrossRefPubMedGoogle Scholar
  24. Lefèvre, E., C. Bardot, C. Noël, J. F. Carrias, E. Viscogliosi, C. Amblard & T. Sime-Ngando, 2007. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environmental Microbiology 9: 61–71.CrossRefPubMedGoogle Scholar
  25. Lefèvre, E., B. Roussel, C. Amblard & T. Sime-Ngando, 2008. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS ONE 3.Google Scholar
  26. Legendre, L. & F. Rassoulzadegan, 1995. Plankton and nutrient dynamics in marine waters. Ophelia 41: 153–172.Google Scholar
  27. Legendre, L. & F. Rassoulzadegan, 1996. Food-web mediated export of biogenic carbon in oceans: hydrodynamic control. Marine Ecology Progress Series 145: 179–193.CrossRefGoogle Scholar
  28. Marcogliese, D. J. & D. K. Cone, 1997. Food webs: a plea for parasites. Trends in Ecology and Evolution 12: 320–324.CrossRefGoogle Scholar
  29. Morand, S. & E. Arias-Gonzalez, 1997. Is parasitism a missing ingredient in model ecosystems? Ecological Modelling 95: 61–74.CrossRefGoogle Scholar
  30. Nakanishi, M., Y. Tezuka, T. Narita, O. Mitamura, K. Kawabata & S.-I. Nakano, 1992. Phytoplankton primary production and its fate in a pelagic area of Lake Biwa. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 35: 47–67.Google Scholar
  31. Niquil, N., S. Pouvreau, A. Sakka, L. Legendre, L. Addessi, R. Le Borgne, L. Charpy & B. Delesalle, 2001. Trophic web and carrying capacity in a pearl oyster farming lagoon (Takapoto, French Polynesia). Aquatic Living Resources 14: 165–174.CrossRefGoogle Scholar
  32. Niquil, N., G. Bartoli, J. Urabe, G. A. Jackson, L. Legendre, C. Dupuy & M. Kumagai, 2006. Carbon steady-state model of the planktonic food web of Lake Biwa, Japan. Freshwater Biology 51: 1570–1585.CrossRefGoogle Scholar
  33. Polis, G. A., 1991. Complex trophic interactions in deserts: an empirical critique of food-web theory. American Naturalist 138: 123–155.CrossRefGoogle Scholar
  34. Pomeroy, L. R., 1974. The ocean’s food web, a changing paradigm. Bioscience 24: 499–504.CrossRefGoogle Scholar
  35. Pradeep Ram, A. S., Y. Nishimura, Y. Tomaru, K. Nagasaki & T. Nagata, 2010. Seasonal variation in viral induced-mortality of bacterioplankton in the water column of a large mesotrophic lake (Lake Biwa, Japan). Aquatic Microbial Ecology 58(3): 249–259.CrossRefGoogle Scholar
  36. Pratt, J. R. & J. Cairns, 1985. Functional groups in the protozoa: roles in differing ecosystems. J Protozool 32: 415–423.Google Scholar
  37. Rasconi, S., M. Jobard, L. Jouve & T. Sime-Ngando, 2009. Use of calcofluor white for detection, identification and quantification of phytoplanktonic fungal parasites. Appl Environ Microbiol 75: 2545–2553.CrossRefPubMedGoogle Scholar
  38. Rooney, N., K. McCann, G. Gellner & J. C. Moore, 2006. Structural asymmetry and the stability of diverse food webs. Nature 442: 265–269.CrossRefPubMedGoogle Scholar
  39. Stone, L., T. Berman, R. Bonner, S. Barry & S. W. Weeks, 1993. Lake Kinneret: a seasonal model for carbon flux through the planktonic biota. Limnology and Oceanography 38: 1680–1695.CrossRefGoogle Scholar
  40. Suberkropp, K. F. & E. C. Cantino, 1973. Utilization of endogenous reserves by swimming zoospores of Blastocladiella emersonii. Archiv fur Mikrobiologie 89: 205–221.CrossRefGoogle Scholar
  41. Ulanowicz, R. E., 1986. Growth & Development: Ecosystems Phenomenology. Springer-Verlag, New York: 203.Google Scholar
  42. Ulanowicz, R. E., 1997. Ecology, The Ascendent Perspective. Columbia University Press, New York: 201 pp.Google Scholar
  43. Ulanowicz, R. E., 1999. NETWRK 4.2 a Package of Computer Algorithms to Analyse Ecological Flow Networks.
  44. Ulanowicz, R. E., S. J. Goerner, B. Lietaer & R. Gomez, 2009. Quantifying sustainability: resilience, efficiency and the return of information theory. Ecological Complexity 6: 27–36.CrossRefGoogle Scholar
  45. Urabe, J., K. Kawabata, M. Nakanishi & K. Shimizu, 1996. Grazing and food size selection of zooplankton community in Lake Biwa during BITEX ‘93. Japanese Journal of Limnology 57: 27–37.Google Scholar
  46. Van den Meersche, K., K. Soetaert & D. Van Oevelen, 2009. xsample(): An R Function for Sampling Linear Inverse Problems. Journal of Statistical Software 30: code snippet 1.Google Scholar
  47. Vézina, A. F. & M. L. Pace, 1994. An inverse model analysis of planktonic food webs in experimental lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 2034–2044.CrossRefGoogle Scholar
  48. Vézina, A. F. & T. Platt, 1988. Food web dynamics in the oceans. 1. Best-estimates of flow networks using inverse methods. Marine Ecology Progress Series 42: 269–287.CrossRefGoogle Scholar
  49. Weete, J. D., M. S. Fuller, M. Q. Huang & S. Gandhi, 1989. Fatty acids and sterols of selected hyphochytriomycetes and chytridiomycetes. Experimental Mycology 13: 183–195.CrossRefGoogle Scholar
  50. Wilhelm, S. W. & C. A. Suttle, 1999. Viruses and nutrient cycles in the sea. BioScience 49: 781–788.CrossRefGoogle Scholar
  51. Woese, C. R., O. Kandler & M. L. Wheelis, 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences USA 87(12): 4576–4579.CrossRefGoogle Scholar
  52. Yoshimizu, C., T. Yoshida, M. Nakanishi & J. Urabe, 2001. Effects of zooplankton on the sinking flux of organic carbon in Lake Biwa. Limnology 2: 37–43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Nathalie Niquil
    • 1
    Email author
  • Maiko Kagami
    • 2
  • Jotaro Urabe
    • 3
  • Urania Christaki
    • 4
  • Eric Viscogliosi
    • 5
  • Télesphore Sime-Ngando
    • 6
  1. 1.LIENSs, Littoral, Environnement et Sociétés, UMR CNRS 6250Université de La RochelleLa RochelleFrance
  2. 2.Department of Environmental Science, Faculty of ScienceToho UniversityFunabashiJapan
  3. 3.Graduate School of Life SciencesTohoku UniversitySendaiJapan
  4. 4.ULCO, Laboratoire d’Océanologie et Géoscience, UMR CNRS 8187Université de Lille-Nord de FranceWimereuxFrance
  5. 5.Inserm, U547, Institut Pasteur de LilleUniversité Lille Nord de FranceLille cedexFrance
  6. 6.LMGE, Laboratoire Microorganismes: Génome & Environnement, UMR CNRS 6023Université Blaise PascalAubière CedexFrance

Personalised recommendations