Hydrobiologia

, Volume 651, Issue 1, pp 127–144 | Cite as

Longitudinal trends and discontinuities in nutrients, chlorophyll, and suspended solids in the Upper Mississippi River: implications for transport, processing, and export by large rivers

  • Jeffrey N. Houser
  • David W. Bierman
  • Robert M. Burdis
  • Lori A. Soeken-Gittinger
Primary research paper

Abstract

Across the distances spanned by large rivers, there are important differences in catchment characteristics, tributary inputs, and river morphology that may cause longitudinal changes in nutrient, chlorophyll, and suspended solids concentrations. We investigated longitudinal and seasonal patterns in the Upper Mississippi River (UMR) using long-term data (1994–2005) from five study reaches that spanned 1300 km of the UMR. Lake Pepin, a natural lake in the most upstream study reach, had a clear effect on suspended material in the river. Suspended solids and total phosphorus (TP) concentrations were substantially lower downstream of the lake and percent organic material (OM%) in suspension was higher. Below L. Pepin, mean total and organic suspended solids (TSS, OSS) and TP increased downriver and exhibited approximately log-linear relationships with catchment area, whereas OM% declined substantially downriver. Despite the downriver increase in TSS and OSS, concentrations similar to those above L. Pepin do not occur until ~370 km downriver indicating the extent of the influence of L. Pepin on the UMR. Chlorophyll concentrations were lower in the most downstream study reach, likely reflecting the shorter residence time and poor light climate, but there was not a consistent longitudinal decline in chlorophyll across the study reaches. Dissolved silica (DSi), DSi:TN, and DSi:TP declined downriver suggesting that DSi uptake and sedimentation by river phytoplankton may be reducing DSi transport in the river, and indicating that the eutrophication of the river may contribute to a reduction of DSi export to the Gulf of Mexico.

Keywords

Nitrogen Phosphorus Silica Stoichiometry Mississippi River 

Notes

Acknowledgments

We thank the LTRMP water quality sampling crews from the Minnesota Department of Natural Resources, Wisconsin Department of Natural Resources, Iowa Department of Natural Resources, Illinois Natural History Survey, and Missouri Department of Conservation, who collected the data reported here. This manuscript benefitted from discussions with staff from these field stations. Barry Johnson, Eric Strauss, Paul Bukaveckas, and anonymous reviewers provided valuable comments on earlier versions of this manuscript. The LTRMP funded this study. The LTRMP is funded by the U.S. Army Corps of Engineers and administered by the U.S. Geological Survey, Upper Midwest Environmental Sciences Center. Shirley Yuan and the USGS Upper Midwest Environmental Sciences Center water quality laboratory conducted all chemical analyses. Brian Gray provided statistical consultation. The land cover analysis was performed by J. C. Nelson and Cassi Bauch and funded in part by the Great Rivers Environmental Monitoring and Assessment Program of the U.S. Environmental Protection Agency. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

  1. Admiraal, W., P. Breugem, D. Jacobs & E. D. D. Vansteveninck, 1990. Fixation of dissolved silicate and sedimentation of biogenic silicate in the lower River Rhine during diatom blooms. Biogeochemistry 9: 175–185.CrossRefGoogle Scholar
  2. Admiraal, W., D. M. L. H. A. Jacobs, P. Breugem & E. D. de Ruyter van Steveninck, 1992. Effects of phytoplankton on the elemental composition (C, N, P) of suspended particulate material in the lower river Rhine. Hydrobiologia 235(236): 479–489.CrossRefGoogle Scholar
  3. Ahearn, D. S., J. H. Viers, J. F. Mount & R. A. Dahlgren, 2006. Priming the productivity pump: flood pulse driven trends in suspended algal biomass distribution across a restored floodplain. Freshwater Biology 51: 1417–1433.CrossRefGoogle Scholar
  4. Alexander, R. B., R. A. Smith & G. E. Schwarz, 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403: 758–761.CrossRefPubMedGoogle Scholar
  5. APHA, 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed. American Public Health Association, Washington, DC.Google Scholar
  6. Aufdenkampe, A. K., E. Mayorga, J. I. Hedges, C. Llerena, P. D. Quay, J. Gudeman, A. V. Krusche & J. E. Richey, 2007. Organic matter in the Peruvian headwaters of the Amazon: compositional evolution from the Andes to the lowland Amazon mainstem. Organic Geochemistry 38: 337–364.CrossRefGoogle Scholar
  7. Baker, A. L. & K. K. Baker, 1979. Effects of temperature and current discharge on the concentration and photosynthetic activity of the phytoplankton in the Upper Mississippi River. Freshwater Biology 9: 191–198.CrossRefGoogle Scholar
  8. Bledsoe, E. L. & E. J. Phlips, 2000. Relationships between phytoplankton standing crop and physical, chemical, and biological gradients in the Suwannee River and Plume Region, U.S.A. Estuaries 236: 458–473.CrossRefGoogle Scholar
  9. Borsuk, M. E., C. A. Stow & K. H. Reckhow, 2004. Confounding effect of flow on estuarine response to nitrogen loading. Journal of Environmental Engineering-ASCE 130: 605–614.CrossRefGoogle Scholar
  10. Bukaveckas, P. A., D. L. Guelda, J. Jack, R. Koch, T. Sellers & J. Shostell, 2005. Effects of point source loadings, sub-basin inputs and longitudinal variation in material retention on C, N and P delivery from the Ohio River Basin. Ecosystems 8: 825–840.CrossRefGoogle Scholar
  11. Cloern, J. E., 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research 7: 1367–1381.CrossRefGoogle Scholar
  12. Cloern, J. E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecological Progress Series 210: 223–253.CrossRefGoogle Scholar
  13. Conley, D. J., 1997. Riverine contribution of biogenic silica to the oceanic silica budget. Limnology and Oceanography 42: 774–777.CrossRefGoogle Scholar
  14. Conley, D. J. & T. C. Malone, 1992. Annual cycle of dissolved silicate in Chesapeake Bay – implications for the production and fate of phytoplankton biomass. Marine Ecological Progress Series 81: 121–128.CrossRefGoogle Scholar
  15. Conley, D. J., C. L. Schelske & E. F. Stoermer, 1993. Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecology Progress Series 101: 179–192.CrossRefGoogle Scholar
  16. Conley, D. J., P. Stalnacke, H. Pitkanen & A. Wilander, 2000. The transport and retention of dissolved silicate by rivers in Sweden and Finland. Limnology and Oceanography 45: 1850–1853.CrossRefGoogle Scholar
  17. Cotner, J. B., J. V. Montoya, D. L. Roelke & K. O. Winemiller, 2006. Seasonally variable riverine production in the Venezuelan llanos. Journal of the North American Benthological Society 25: 171–184.CrossRefGoogle Scholar
  18. Cummins, K. W., G. W. Minshall, J. R. Sedell, C. E. Cushing & R. C. Petersen, 1984. Stream ecosystem theory. Verhandlungen - Internationale Vereinigung fuer Theoretische und Angewandte Limnologie 22: 1818–1827.Google Scholar
  19. Descy, J. P. & V. Gosselain, 1994. Development and ecological importance of phytoplankton in a large lowland river (River Meuse, Belgium). Hydrobiologia 289: 139–155.CrossRefGoogle Scholar
  20. Dodds, W. K. & M. R. Whiles, 2004. Quality and quantity of suspended particles in rivers: continent-scale patterns in the United States. Environmental Management 33: 355–367.CrossRefPubMedGoogle Scholar
  21. Donner, S. D., C. J. Kucharik & J. A. Foley, 2004. Impact of changing land use practices on nitrate export by the Mississippi River. Global Biogeochemical Cycles 18: art. no. GB1028.Google Scholar
  22. Dortch, Q. & T. E. Whitledge, 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research 12: 1293–1309.CrossRefGoogle Scholar
  23. Downing, J. A. & E. McCauley, 1992. The nitrogen–phosphorus relationship in lakes. Limnology and Oceanography 37: 936–945.CrossRefGoogle Scholar
  24. Downing, J. A., S. B. Watson & E. McCauley, 2001. Predicting cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences 46: 1232–1237.Google Scholar
  25. Egge, J. K. & D. L. Aksnes, 1992. Silicate as regulating nutrient in phytoplankton competition. Marine Ecological Progress Series 83: 281–289.CrossRefGoogle Scholar
  26. Fremling, C. R., J. L. Rasmussen, R. E. Sparks, S. P. Cobb, C. F. Bryan & T. O. Claflin, 1989. Mississippi River fisheries: a case history. In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium, Ontario, Canada, 14–21 September, 1986. Canadian Special Publication of Fisheries and Aquatic Sciences, Vol. 106: 309–351.Google Scholar
  27. Friedl, G., C. Teodoru & B. Wehrli, 2004. Is the Iron Gate I reservoir on the Danube River a sink for dissolved silica? Biogeochemistry 68: 21–32.CrossRefGoogle Scholar
  28. Guhr, H., D. Spott, G. Bormiki, M. Baborowski & B. Karrasch, 2003. The effects of nutrient concentration in the River Elbe. Acta Hydrochimica et Hydrobiologica 31: 282–296.CrossRefGoogle Scholar
  29. Gupta, L. P., V. Subramanian & V. Ittekkot, 1997. Biogeochemistry of particulate organic matter transported by the Godavari River, India. Biogeochemistry 38: 103–128.CrossRefGoogle Scholar
  30. Howarth, R., D. Walker & A. Sharpley, 2002. Sources of nitrogen pollution to coastal waters of the United States. Estuaries 25: 656–676.CrossRefGoogle Scholar
  31. Huff, D. R., 1986. Phytoplankton communities in Navigation Pool No. 7 of the Upper Mississippi River. Hydrobiologia 136: 47–56.CrossRefGoogle Scholar
  32. Humborg, C., M. Pastuszak, J. Aigars, H. Siegmund, C. M. Mörth & V. Ittekkot, 2006. Decreased silica land-sea fluxes through damming in the Baltic Sea catchment – significance of particle trapping and hydrological alterations. Biogeochemistry 77: 265–281.CrossRefGoogle Scholar
  33. Ittekkot, V., 1988. Global trends in the nature of organic matter in river suspensions. Nature 332: 436–438.CrossRefGoogle Scholar
  34. James, W. F. & J. W. Barko, 2004. Diffusive fluxes and equilibrium processes in relation to phosphorus dynamics in the Upper Mississippi River. River Research and Applications 20: 473–484.CrossRefGoogle Scholar
  35. James, W. F., J. W. Barko & H. L. Eakin, 1995. Internal phosphorus loading in Lake Pepin, Upper Mississippi River. Journal of Freshwater Ecology 10: 269–276.Google Scholar
  36. Julien, P. Y., 2002. River Mechanics. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  37. Kelley, D. W. & E. A. Nater, 2000. Historical sediment flux from three watersheds into Lake Pepin, Minnesota, USA. Journal of Environmental Quality 29: 561–568.CrossRefGoogle Scholar
  38. Kilham, P., 1971. A hypothesis concerning silica and the freshwater planktonic diatoms. Limnology and Oceanography 16: 10–18.CrossRefGoogle Scholar
  39. Knox, J. C., 2006. Floodplain sedimentation in the Upper Mississippi Valley: natural versus human accelerated. Geomorphology 79: 286–310.CrossRefGoogle Scholar
  40. Li, M. T., K. Q. Xu, M. Watanabe & Z. Y. Chen, 2007. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal and Shelf Science 71: 3–12.CrossRefGoogle Scholar
  41. Maurer, W. R., T. O. Claflin, R. G. Rada & J. T. Rogala, 1995. Volume loss and mass balance for selected physicochemical constituents in Lake Pepin, Upper Mississippi River, USA. Regulated Rivers: Research and Management 11: 175–184.CrossRefGoogle Scholar
  42. Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing & R. L. Vannote, 1983. Interbiome comparison of stream ecosystem dynamics. Ecological Monographs 53: 1–25.CrossRefGoogle Scholar
  43. Minshall, G. W., K. W. Cummings, R. C. Petersen, E. E. Cushing, D. A. Bruns, R. Sedell & R. L. Vannote, 1985. Developments in stream ecosystem theory. Canadian Journal of Fisheries and Aquatic Sciences 42: 1045–1055.CrossRefGoogle Scholar
  44. Moreira-Turcq, P., P. Seyler, J. L. Guyot & H. Etcheber, 2003. Exportation of organic carbon from the Amazon River and its main tributaries. Hydrological Processes 17: 1329–1344.CrossRefGoogle Scholar
  45. Newbold, J. D., J. W. Elwood, R. V. O’Neill & A. L. Sheldon, 1983. Phosphorus dynamics in a woodland stream ecosystem: a study in nutrient spiraling. Ecology 64: 1249–1265.CrossRefGoogle Scholar
  46. Officer, C. B. & J. H. Ryther, 1980. The possible importance of silicon in marine eutrophication. Marine Ecological Progress Series 3: 83–91.CrossRefGoogle Scholar
  47. Rashid, M. A., 1985. Geochemistry of Marine Humic Compounds. Springer-Verlag, New York.Google Scholar
  48. Reschke, S., V. Ittekkot & N. Panin, 2002. The nature of organic matter in the Danube River particles and north-western Black Sea sediments. Estuarine, Coastal and Shelf Science 54: 563–574.CrossRefGoogle Scholar
  49. Richardson, W. B., E. A. Strauss, L. A. Bartsch, E. M. Monroe, J. C. Cavanaugh, L. Vingum & D. Soballe, 2004. Denitrification in the Upper Mississippi River: rates, controls, and contribution to nitrate flux. Canadian Journal of Fisheries and Aquatic Sciences 61: 1102–1112.CrossRefGoogle Scholar
  50. Richey, J. E., J. T. Brock, R. J. Naiman, R. C. Wissmayk & R. F. Stallard, 1980. Organic carbon: oxidation and transport in the Amazon River. Science 207: 1348–1350.Google Scholar
  51. Richey, J. E., R. H. Meade, E. D. A. H. Salati, C. F. Nordin Jr. & U. Dos Santos, 1986. Water discharge and suspended sediment concentrations in the Amazon River: 1982–1984. Water Resources Research 22: 756–764.CrossRefGoogle Scholar
  52. Scavia, D., N. N. Rabalais, R. E. Turner, D. Justic & W. J. J. Wiseman, 2003. Predicting the response of Gulf of Mexico hypoxia to variations in the Mississippi River nitrogen load. Limnology and Oceanography 48: 951–956.CrossRefGoogle Scholar
  53. Sedell, J. R., J. E. Richey & F. J. Swanson, 1989. The River Continuum Concept: a basis for the expected ecosystem behavior of very large rivers? In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium, Ontario, Canada, 14–21 September, 1986. Canadian Special Publication of Fisheries and Aquatic Sciences, Vol. 106: 49–55.Google Scholar
  54. Smith, V. H., 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: an empirical and theoretical analysis. Limnology and Oceanography 27: 1101–1112.CrossRefGoogle Scholar
  55. Smith, V. H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671.CrossRefPubMedGoogle Scholar
  56. Soballe, D. M. & J. R. Fischer, 2004. Long Term Resource Monitoring Program procedures: water quality monitoring. U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin. Technical Report LTRMP 2004-T002-1 (Ref. 95-P002-5): 73 pp. + Appendixes A–J (available on internet at http://www.umesc.usgs.gov/documents/reports/2004/04t00201.pdf) Accessed 20 October 2009.
  57. Soballe, D. M. & B. L. Kimmel, 1987. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology 68: 1943–1954.CrossRefGoogle Scholar
  58. Sparks, R. E., 1995. Need for ecosystem management of large rivers and their floodplains. BioScience 45: 168–182.CrossRefGoogle Scholar
  59. Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ, USA.Google Scholar
  60. Tank, J. L., J. L. Meyer, D. M. Sanzone, P. J. Mulholland, J. R. Webster, B. J. Peterson, W. M. Wollheim & N. E. Leonard, 2000. Analysis of nitrogen cycling in a forest stream during autumn using a N-15 tracer addition. Limnology and Oceanography 45: 1013–1029.CrossRefGoogle Scholar
  61. Teodoru, C. & B. Wehrli, 2005. Retention of sediments and nutrients in the Iron Gate I Reservoir on the Danube River. Biogeochemistry 76: 539–565.CrossRefGoogle Scholar
  62. Triplett, L. D., D. R. Engstrom, D. J. Conley & S. M. Schellhaass, 2008. Silica fluxes and trapping in two contrasting natural impoundments of the Upper Mississippi River. Biogeochemistry 87: 217–230.CrossRefGoogle Scholar
  63. Turner, R. E. & N. N. Rabalais, 1991. Changes in Mississippi River water quality this century. BioScience 41: 140–147.CrossRefGoogle Scholar
  64. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  65. Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems. In Fontaine, T. D. I. & S. M. Bartell (eds), Dynamics of Lotic Ecosystems. Ann Arber Science Publishers, Ann Arbor, MI: 29–41.Google Scholar
  66. Wasely, D., 2000. Concentration and movement of nitrogen and other materials in selected reaches and tributaries of the Upper Mississippi River System. M. Sc. Thesis, Department of Biology, The University of Wisconsin, La Crosse, WI.Google Scholar
  67. Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39: 1985–1992.CrossRefGoogle Scholar
  68. Wilcox, D. B., 1993. An aquatic habitat classification system for the Upper Mississippi River System. U.S. Fish and Wildlife Service. EMTC 93-T003: 9 pp. + Appendix A (NTIS PB93-208981) (available on internet http://www.umesc.usgs.gov/documents/reports/1993/93t003.pdf) Accessed 24 October 2008.
  69. Wood, T., F. H. Bormann & G. K. Voigt, 1984. Phosphorus cycling in a northern hardwood forest: biological and chemical control. Science 223: 391–393.CrossRefPubMedGoogle Scholar
  70. Young, R. G. & A. D. Huryn, 1997. Longitudinal patterns of organic matter transport and turnover along a New Zealand grassland river. Freshwater Biology 38: 93–107.CrossRefGoogle Scholar
  71. Young, R. G., A. J. Quarterman, R. F. Eyles, R. A. Smith & W. B. Bowden, 2005. Water quality and thermal regime of the Motueka River: influences of land cover, geology and position in the catchment. New Zealand Journal of Marine and Freshwater Research 39: 803–825.CrossRefGoogle Scholar

Copyright information

© US Government: USGS 2010

Authors and Affiliations

  • Jeffrey N. Houser
    • 1
  • David W. Bierman
    • 2
  • Robert M. Burdis
    • 3
  • Lori A. Soeken-Gittinger
    • 4
  1. 1.US Geological Survey Upper Midwest Environmental Sciences CenterLa CrosseUSA
  2. 2.Iowa Department of Natural ResourcesLTRMP Mississippi River Monitoring StationBellevueUSA
  3. 3.Minnesota Department of Natural ResourcesLTRMP Lake City Field StationLake CityUSA
  4. 4.Illinois Natural History SurveyLTRMP Pool 26 Field StationBrightonUSA

Personalised recommendations