, Volume 651, Issue 1, pp 115–126 | Cite as

The role of the predatory trahira (Pisces: Erythrinidae) in structuring fish assemblages in lakes of a Neotropical floodplain

  • Ana Cristina Petry
  • Luiz Carlos Gomes
  • Pitágoras Augusto Piana
  • Angelo Antonio Agostinho
Primary research paper


We performed an experimental manipulation of trahira Hoplias aff. malabaricus in a series of isolated lakes of the upper Paraná River floodplain to evaluate its short-term impact on the structure of fish assemblages. The effects of trahira density (treatment groups: addition, removal, and reference) in two habitat categories (open and macrophyte-covered areas) on attributes of the fish assemblage structure were evaluated (using rm-ANOVA) over 120 days. Reductions in species richness were recorded in all assemblages and were more pronounced at the end of the experiment within macrophyte-covered areas of the lakes where H. aff. malabaricus was removed. In these lakes, the number of fish was also significantly smaller and evenness was significantly higher than in those in which trahira were added or maintained at natural densities. The increase of the relative abundance of all size classes over the first 60 days on the assemblages where trahira was present, and the decrease of the small-sized fish where trahira was absent contributed to the lack of pronounced alterations in total biomass. The absence of the predator from its preferred habitat was found to negatively affect the less abundant species, which seemed to be highly sensitive to the effects of interspecific competition among prey species. In addition to the well-known effects of hydrological seasonality, the role played by native predators might be important in determining the persistence of local species in the fish assemblages of Neotropical floodplains.


Hoplias aff. malabaricus Predation Whole-lake experiment 



This study is part of the PhD dissertation of ACP, in the Program of Environmental Sciences, of the Maringá State University, in the long-term program PELD Site-6 . Authors acknowledge many people and institutions: several students of Maringá State University assisted in field and lab work; logistical support was supplied by the Nucleus of Research in Limnology, Ichthyology and Aquaculture (Nupélia), and financial support was provided by the National Council of Scientific and Technological Development (CNPq) to PELD Site-6, to ACP (Process 142220/2001-9), and to LCG, AAA, and ACP (research productivity scholarship). We particularly acknowledge the critical reading and suggestions of E. K. Okada, L. M. Bini, and C. S. Agostinho. The constructive comments of G. Grossman and other five anonymous referees substantially contributed to the improvement of earlier versions of the manuscript.

Supplementary material

10750_2010_281_MOESM1_ESM.doc (136 kb)
Supplementary material 1 (DOCX 24 kb)


  1. Agostinho, A. A., L. C. Gomes, S. Veríssimo & E. K. Okada, 2004. Flood regime, dam regulation and fish in the upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14: 11–19.CrossRefGoogle Scholar
  2. Agostinho, A. A., S. M. Thomaz, L. C. Gomes & S. L. S. M. A. Baltar, 2007. Influence of the macrophyte Eichhornia azurea on fish assemblage of the Upper Paraná River floodplain (Brazil). Aquatic Ecology 41: 611–619.CrossRefGoogle Scholar
  3. Almeida, V. L. L., N. S. Hahn & A. E. A. M. Vazzoler, 1997. Feeding patterns in five predatory fishes of the high Paraná River floodplain (PR, Brazil). Ecology of Freshwater Fish 6: 123–133.CrossRefGoogle Scholar
  4. Azevedo, P. & A. L. Gomes, 1943. Contribuição ao estudo da traíra Hoplias malabaricus (Bloch, 1794). Boletim de Indústria Animal 5: 15–64.Google Scholar
  5. Barbieri, G., J. R. Verani & M. C. Barbieri, 1982. Dinâmica quantitativa da nutrição de Hoplias malabaricus (Bloch, 1974), na represa do Lobo (Brotas—Itirapina/SP), (Pisces, Erythrinidae). Revista Brasileira de Biologia 42: 295–302.Google Scholar
  6. Bayley, P. B., 1988. Factors affecting growth rates of young tropical floodplain fishes: seasonality and density-dependence. Environmental Biology of Fishes 21: 127–142.CrossRefGoogle Scholar
  7. Bertollo, L. A. C., G. G. Born, J. A. Dergam, A. S. Fenocchio & O. Moreira-Filho, 2000. A biodiversity approach in the neotropical Erythrinidae fish, Hoplias malabaricus: karyotypic survey, geographic distribution of cytotypes and cytotaxonomic consideration. Chromosome Research 8: 603–613.CrossRefPubMedGoogle Scholar
  8. Bialetzki, A., K. Nakatani, P. V. Sanches & G. Baumgartner, 2002. Spatial and temporal distributition of larvae and juveniles of Hoplias aff. malabaricus (Characiformes, Erythrinidae) in the upper Paraná River floodplain, Brazil. Brazilian Journal of Biology 62: 211–222.CrossRefGoogle Scholar
  9. Bistoni, M. A., J. G. Haro & M. Gutiérrez, 1995. Feeding of Hoplias malabaricus in the wetlands of Dulce river (Córdoba, Argentina). Hydrobiologia 316: 103–107.CrossRefGoogle Scholar
  10. Caswell, H., 1978. Predator-mediated coexistence: a nonequilibrium model. The American Naturalist 112: 127–154.CrossRefGoogle Scholar
  11. Chase, J. M., 2003. Strong and weak trophic cascades along a productivity gradient. Oikos 101: 187–195.CrossRefGoogle Scholar
  12. Connell, J. H., 1983. On the prevalence and relative importance of interespecific competition: evidence from field experiments. The American Naturalist 122: 661–696.CrossRefGoogle Scholar
  13. Creed, R. P. Jr., 2000. Is there a new keystone species in North American lakes and rivers? Oikos 91: 405–408.CrossRefGoogle Scholar
  14. Delariva, R. L., A. A. Agostinho, K. Nakatani & G. Baumgartner, 1994. Ichthyofauna associated to aquatic macrophytes in the upper Parana river floodplain. Revista UNIMAR 16: 41–60.Google Scholar
  15. Demers, E., D. J. McQueen, C. W. Ramcharan & A. Pérez-Fuentetaja, 2001. Did piscivores regulate changes in fish community structure? Archiv für Hydrobiologie 56: 49–80.Google Scholar
  16. Esteves, K. E. & P. M. J. R. Galetti, 1995. Food partitioning among some characids of a small Brazilian floodplain lake from the Paraná river basin. Environmental Biology of Fishes 42: 375–389.CrossRefGoogle Scholar
  17. Flecker, A. S., 1992. Fish trophic guilds and the structure of a tropical stream: weak direct vs. strong indirect effects. Ecology 73: 927–940.CrossRefGoogle Scholar
  18. Fraser, D. F. & J. F. Gilliam, 1992. Nonlethal impacts of predator invasion: facultative suppression of growth and reproduction. Ecology 73: 959–970.CrossRefGoogle Scholar
  19. Fraser, D. F., J. F. Gilliam, M. P. MacGowan, C. M. Arcaro & P. H. Guillozet, 1999. Habitat quality in a hostile river corridor. Ecology 80: 597–607.CrossRefGoogle Scholar
  20. Froese, R. & D. Pauly, 2008. FishBase. World Wide Web electronic publication., version (09/2008).
  21. Gilliam, J. F. & D. F. Fraser, 2001. Movement in corridors: enhancement by predation threat, disturbance, and habitat structure. Ecology 82: 258–273.CrossRefGoogle Scholar
  22. Gilliam, J. F., D. F. Fraser & M. Alkins-Koo, 1993. Structure of a tropical stream fish community: a role for biotic interactions. Ecology 74: 1856–1870.CrossRefGoogle Scholar
  23. Gimenes, M. R. & L. dos Anjos, 2004. Spatial distribution of birds on three islands in the upper River Paraná, Southern Brazil. Ornitologia Neotropical 15: 71–85.Google Scholar
  24. Gimenes, M. R. & L. dos Anjos, 2006. Influence of lagoons size and prey availability on the wading birds (Ciconiiformes) in the upper Paraná River floodplain, Brazil. Brazilian Archives of Biology and Technology 49: 463–473.CrossRefGoogle Scholar
  25. Hahn, N. S., R. Fugi & I. F. Andrian, 2004. Trophic ecology of the fish assemblages. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (eds), The Upper Paraná River and its Floodplain: Physical Aspects, Ecology and Conservation. Backhuys Publishers, Leiden: 247–269.Google Scholar
  26. Hjelm, J. & L. Persson, 2001. Size-dependent attack rate and handling capacity: inter-cohort competition in a zooplanktivorous fish. Oikos 95: 520–532.CrossRefGoogle Scholar
  27. Jacobsen, L. & S. Berg, 1998. Diel variation in habitat use by planktivores in field enclosure experiments: the effect of submerged macrophytes and predation. Journal of Fish Biology 53: 1207–1219.CrossRefGoogle Scholar
  28. Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Sondergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.CrossRefGoogle Scholar
  29. Layman, C. A. & K. O. Winemiller, 2004. Size-based prey responses to piscivore exclusion in a Neotropical river. Ecology 85: 1311–1320.CrossRefGoogle Scholar
  30. Loureiro, V. E. & N. S. Hahn, 1996. Dieta e atividade alimentar da traíra Hoplias malabaricus (Bloch, 1794) (Osteichthyes, Erythrinidae), nos primeiros anos de formação do reservatório de Segredo—PR. Acta Limnologica Brasiliensia 8: 195–205.Google Scholar
  31. Lowe-McConnell, R. H., 1987. Ecological Studies in Tropical Fish Communities. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  32. Luz-Agostinho, K. D. G., A. A. Agostinho, L. C. Gomes & H. F. Júlio Jr, 2008. Influence of flood pulses on diet composition and trophic relationships among piscivorous fish in the upper Paraná River floodplain. Hydrobiologia 607: 187–198.CrossRefGoogle Scholar
  33. Mazzeo, N., C. I. Iglesias, F. T. de Mello, A. Borthagaray, C. Fosalba, R. Ballabio, D. Larrea, J. Vilches, S. Garcia, J. P. Pacheco & E. Jeppesen, 2010. Trophic effects of Hoplias malabaricus (Characiformes, Erythrinidae) in subtropical lakes food webs: a mesocosm approach. Hydrobiologia 644: 325–335.CrossRefGoogle Scholar
  34. Mittelbach, G. G., A. M. Turner, D. J. Hall, J. E. Retting & C. W. Osenberg, 1995. Perturbation and resilience: a long-term whole-lake study of predator extinction and reintroduction. Ecology 76: 2347–2360.CrossRefGoogle Scholar
  35. Miyasaka, H., M. Genkai-Kato, N. Kuhara & S. Nakano, 2003. Predatory fish impact on competition between stream insect grazers: a consideration of behaviorally- and density-mediated effects on an apparent coexistence pattern. Oikos 101: 511–520.CrossRefGoogle Scholar
  36. Nakatani, K., A. A. Agostinho, G. Baumgartner, A. Bialetzki, P. V. Sanches, M. C. Makrakis & C. Pavanelli, 2001. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. EDUEM, Maringá, Brazil.Google Scholar
  37. Norrdahl, K., T. Klemola, E. Korpimäki & M. Koivula, 2002. Strong seasonality may attenuate trophic cascades: vertebrate predator exclusion in boreal grassland. Oikos 99: 419–430.CrossRefGoogle Scholar
  38. Okada, E. K., A. A. Agostinho, M. Petrere Jr. & T. Penczak, 2003. Factors affecting fish diversity and abundance in drying ponds and lagoons in the upper Paraná river basin, Brazil. Ecohydrology & Hydrobiology 3: 97–110.Google Scholar
  39. Oliveros, O. B. & L. K. Rossi, 1991. Ecologia trofica de Hoplias malabaricus malabaricus (Pisces, Erythrinidae). Revista de la Asociacion de Ciências Naturales del Litoral 22: 55–68.Google Scholar
  40. Oyakawa, O. T., 2003. Family Erythrinidae. In Reis, R. E., S. O. Kullander & C. J. Ferraris Jr. (eds), Check List of the Freshwater Fishes of South and Central America. EDIPUCRS, Porto Alegre, Brazil: 238–240.Google Scholar
  41. Paine, R. T., 1966. Food web complexity and species diversity. The American Naturalist 100: 65–75.CrossRefGoogle Scholar
  42. Paine, R. T., 1969. A note on trophic complexity and community stability. The American Naturalist 103: 91–93.CrossRefGoogle Scholar
  43. Paiva, M. P., M. Petrere Jr., A. J. Petenate, F. H. Nepomuceno & E. A. Vasconcelos, 1994. Relationship between the number of predatory fish species and fish yield in large north-eastern Brazilian reservoirs. In Cowx, I. G. (ed.), Rehabilitation of Freshwater Fisheries. Fishing News Books, Oxford: 120–129.Google Scholar
  44. Pelicice, F. M., S. M. Thomaz & A. A. Agostinho, 2008. Simple relationships to predict attributes of fish assemblages in patches of submerged macrophytes. Neotropical Ichthyology 6: 543–550.CrossRefGoogle Scholar
  45. Petry, A. C., A. A. Agostinho & L. C. Gomes, 2003a. Spatial variation of the fish assemblage structure from the upper Rio Paraná floodplain, Brazil, in a dry year. Acta Limnologica Brasiliensia 15: 1–13.Google Scholar
  46. Petry, A. C., A. A. Agostinho & L. C. Gomes, 2003b. Fish assemblages of tropical floodplain lagoons: exploring the role of connectivity in a dry year. Neotropical Ichthyology 1: 111–119.CrossRefGoogle Scholar
  47. Petry, A. C., A. A. Agostinho, P. A. Piana & L. C. Gomes, 2007. Effects of temperature on prey consumption and growth in mass of juvenile trahira Hoplias aff. malabaricus (Bloch, 1794). Journal of Fish Biology 70: 1855–1864.CrossRefGoogle Scholar
  48. Piana, P. A., L. C. Gomes & A. A. Agostinho, 2006. Comparison of predator–prey interaction models for fish assemblages from the neotropical region. Ecological Modelling 192: 259–270.CrossRefGoogle Scholar
  49. Pielou, E. C., 1969. An Introduction to Mathematical Ecology. John Wiley & Sons, New York.Google Scholar
  50. Power, M. E., M. S. Parker & J. T. Wootton, 1996a. Disturbance and food chain length in rivers. In Polis, G. A. & K. O. Winemiller (eds), Food Webs: Integration of Patterns & Dynamics. Chapman & Hall, New York: 286–297.Google Scholar
  51. Power, M. E., D. Tilman, J. A. Estes, B. A. Menge, W. J. Bond, L. S. Mills, D. Daily, J. C. Castilla, J. Lubchenco & R. T. Paine, 1996b. Challenges in the quest for keystones: identifying keystone species is difficult—but essential to understanding how loss of species will affect ecosystems. BioScience 46: 609–620.CrossRefGoogle Scholar
  52. Sanford, E., 1999. Regulation of keystone predation by small changes in ocean temperature. Science 283: 2095–2097.CrossRefPubMedGoogle Scholar
  53. Sih, A., P. Crowley, M. McPeek, J. Petranka & K. Strohmeier, 1985. Predation, competition, and prey communities: a review of field experiments. Annual Reviews of Ecology and Systematics 16: 269–311.CrossRefGoogle Scholar
  54. Suzuki, H. I., A. E. A. de M. Vazzoler, E. E. Marques, M. A. P. Lizama & P. Inada, 2004. Reproductive ecology of the fish assemblage. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (orgs), The Upper Paraná River and its Floodplain: Physical Aspects, Ecology and Conservation. Backhuys Publishers, The Netherlands: 271–291.Google Scholar
  55. Tilman, D., 1989. Ecological experimentation: strengths and conceptual problems. In Likens, G. E. (ed.), Long-term Studies in Ecology: Approaches and Alternatives. Springer-Verlag, New York: 207–228.Google Scholar
  56. Vazzoler, A. E. A. de M., 1996. Biologia da reprodução de peixes teleósteos: teoria e prática. EDUEM, Maringá, Brazil.Google Scholar
  57. Werner, E. E., J. F. Gilliam, D. J. Hall & G. G. Mittelbach, 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 1540–1548.CrossRefGoogle Scholar
  58. Winemiller, K. O., 1989. Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81: 225–241.Google Scholar
  59. Zaret, T. M. & A. S. Rand, 1971. Competition in tropical stream fishes: support for the competitive exclusion principle. Ecology 52: 336–342.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ana Cristina Petry
    • 1
  • Luiz Carlos Gomes
    • 2
  • Pitágoras Augusto Piana
    • 3
  • Angelo Antonio Agostinho
    • 2
  1. 1.Universidade Federal do Rio de Janeiro, NupemMacaéBrazil
  2. 2.Universidade Estadual de Maringá, NupéliaMaringáBrazil
  3. 3.Universidade Estadual do Oeste do ParanáToledoBrazil

Personalised recommendations