Advertisement

Hydrobiologia

, Volume 649, Issue 1, pp 267–277 | Cite as

Calorie restriction in the rotifer Brachionus plicatilis enhances hypoxia tolerance in association with the increased mRNA levels of glycolytic enzymes

  • Yori Ozaki
  • Gen Kaneko
  • Yoshiko Yanagawa
  • Shugo Watabe
Primary research paper

Abstract

The rotifer Brachionus plicatilis shows a typical sigmoid growth curve, where calorie restriction (CR) and hypoxia are thought to be introduced at high population density in the stationary phase. CR may induce a shift from aerobic to anaerobic metabolism in this stationary phase, possibly contributing to an increased hypoxia tolerance. This study was undertaken to investigate the effect of CR on hypoxia tolerance at the molecular level. When rotifers were cultured under CR (fed every second day) or fed ad libitum (AL), and subsequently exposed to hypoxia, those in the CR group had a higher survival rate than their AL counterparts. We then cloned cDNAs encoding three glycolytic enzymes, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), enolase (ENO), and phosphoglycerate mutase (PGM) and compared their accumulated mRNA levels between CR and AL rotifers at ages of 1–8 days by quantitative real-time PCR. The CR group showed significantly higher mRNA levels of GAPDH and ENO than their AL counterparts. Furthermore, rotifers in the stationary phase showed higher mRNA levels of these enzymes than those in the exponential growth phase. These results suggest that CR induces anaerobic metabolism, which possibly contributes to population stability under hypoxia in the stationary phase.

Keywords

Brachionus plicatilis Calorie restriction Glycolysis Hypoxia Rotifer 

Notes

Acknowledgments

We are grateful to Professor A. Hagiwara, Graduate School of Science and Technology, Nagasaki University, Japan for providing Brachionus plicatilis Ishikawa strain. This work was partly supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Y. O. was supported by Research Fellowships for Young Scientist from the Japan Society for the Promotion of Science.

References

  1. Castello, L., T. Froio, G. Cavallini, F. Biasi, A. Sapino, G. Leonarduzzi, E. Bergamini, G. Poli & E. Chiarpotto, 2005. Calorie restriction protects against age-related rat aorta sclerosis. FASEB Journal 19: 1863–1865.PubMedGoogle Scholar
  2. Denekamp, N. Y., M. A. S. Thorne, M. S. Clark, M. Kube, R. Reinhardt & E. Lubzens, 2009. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10: 108.CrossRefPubMedGoogle Scholar
  3. Donati, A., G. Recchia, G. Cavallini & E. Bergamini, 2008. Effect of aging and anti-aging caloric restriction on the endocrine regulation of rat liver autophagy. Journals of Gerontology Series A: Biological Sciences and Medical Sciences 63: 550–555.Google Scholar
  4. Enesco, H. E., 1993. Rotifers in aging research: use of rotifers to test various theories of aging. Hydrobiologia 255: 59–70.CrossRefGoogle Scholar
  5. Esparcia, A., M. R. Miracle & M. Serra, 1989. Brachionus plicatilis tolerance to low oxygen concentrations. Hydrobiologia 186: 331–337.CrossRefGoogle Scholar
  6. Esparcia, A., M. Serra & M. R. Miracle, 1992. Relationships between oxygen concentration and patterns of energy metabolism in the rotifer Brachionus plicatilis. Comparative Biochemistry and Physiology B – Biochemistry and Molecular Biology 103: 357–362.CrossRefGoogle Scholar
  7. Finkel, T. & N. J. Holbrook, 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247.CrossRefPubMedGoogle Scholar
  8. Gonzales-Pacheco, D. M., W. C. Buss, K. M. Koehler, W. F. Woodside & S. S. Alpert, 1993. Energy restriction reduces metabolic rate in adult male Fisher-344 rats. Journal of Nutrition 123: 90–97.PubMedGoogle Scholar
  9. Goodrick, C. L., D. K. Ingram, M. A. Reynolds, J. R. Freeman & N. Cider, 1990. Effects of intermittent feeding upon body weight and lifespan in inbred mice: interaction of genotype and age. Mechanisms of Ageing and Development 55: 69–87.CrossRefPubMedGoogle Scholar
  10. Gorr, T. A., M. Gassmann & P. Wappner, 2006. Sensing and responding to hypoxia via HIF in model invertebrates. Journal of Insect Physiology 52: 349–364.CrossRefPubMedGoogle Scholar
  11. Gracey, A. Y., J. V. Troll, & G. N. Somero, 2001. Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proceedings of the National Academy of Sciences of the United States of America 98: 1993-1998.Google Scholar
  12. Holt, S. J. & D. L. Riddle, 2003. SAGE surveys C. elegans carbohydrate metabolism: evidence for an anaerobic shift in the long-lived dauer larva. Mechanisms of Ageing and Development 124: 779–800.CrossRefPubMedGoogle Scholar
  13. Houthoofd, K., B. P. Braeckman, I. Lenaerts, K. Brys, A. De Vreese, S. Van Eygn & J. R. Vanfleteren, 2002. No reduction of metabolic rate in food restricted Caenorhabditis elegans. Experimental Gerontology 37: 1359–1369.CrossRefPubMedGoogle Scholar
  14. Houthoofd, K., B. P. Braeckman, A. De Vreese, S. Van Eygen, I. Lenaerts, K. Brys, F. Matthijssens & J. R. Vanfleteren, 2004. Caloric restriction, Ins/IGF-1 signalling and longevity in the nematode Caenorhabditis elegans. Belgian Journal of Zoology 134: 79–84.Google Scholar
  15. Hulbert, A. J., D. J. Clancy, W. Mair, B. P. Braeckman, D. Gems & L. Partridge, 2004. Metabolic rate is not reduced by dietary-restriction or by lowered insulin/IGF-1 signalling and is not correlated with individual lifespan in Drosophila melanogaster. Experimental Gerontology 39: 1137–1143.CrossRefPubMedGoogle Scholar
  16. Iyer, N. V., L. E. Kotch, F. Agani, S. W. Leung, E. Laughner, R. H. Wenger, M. Gassmann, J. D. Gearhart, A. M. Lawler, A. Y. Yu & G. L. Semenza, 1998. Cellular and developmental control of O-2 homeostasis by hypoxia-inducible factor 1 alpha. Genes & Development 12: 149–162.CrossRefGoogle Scholar
  17. Kaneko, G., S. Kinoshita, T. Yoshinaga, K. Tsukamoto & S. Watabe, 2002. Changes in expression patterns of stress protein genes during population growth of the rotifer Brachionus plicatilis. Fisheries Science 68: 1317–1323.CrossRefGoogle Scholar
  18. Kaneko, G., T. Yoshinaga, Y. Yanagawa, S. Kinoshita, K. Tsukamoto & S. Watabe, 2005. Molecular characterization of Mn-superoxide dismutase and gene expression studies in dietary restricted Brachionus plicatilis rotifers. Hydrobiologia 546: 117–123.CrossRefGoogle Scholar
  19. Kizito, Y. S. & A. Nauwerck, 1995. Temporal and vertical distribution of planktonic rotifers in a meromictic crater lake, Lake Nyahirya (western Uganda). Hydrobiologia 313: 303–312.CrossRefGoogle Scholar
  20. Koizumi, A., M. Tsukada, Y. Wada, H. Masuda & R. Weindruch, 1992. Mitotic activity in mice is suppressed by energy restriction-induced torpor. Journal of Nutrition 122: 1446–1453.PubMedGoogle Scholar
  21. Kondoh, H., M. E. Lleonart, J. Gil, J. Wang, P. Degan, G. Peters, D. Martinez, A. Carnero & D. Beach, 2005. Glycolytic enzymes can modulate cellular life span. Cancer Research 65: 177–185.PubMedGoogle Scholar
  22. Kondoh, H., M. E. Lleonart, D. Bernard & J. Gil, 2007. Protection from oxidative stress by enhanced glycolysis; a possible mechanism of cellular immortalization. Histology and Histopathology 22: 85–90.PubMedGoogle Scholar
  23. Koubova, J. & L. Guarente, 2003. How does calorie restriction work? Genes & Development 17: 313–321.CrossRefGoogle Scholar
  24. Lee, C. K., R. G. Klopp, R. Weindruch & T. A. Prolla, 1999. Gene expression profile of aging and its retardation by caloric restriction. Science 285: 1390–1393.CrossRefPubMedGoogle Scholar
  25. Marcial, H. S., A. Hagiwara & T. W. Snell, 2005. Effect of some pesticides on reproduction of rotifer Brachionus plicatilis Müller. Hydrobiologia 546: 569–575.CrossRefGoogle Scholar
  26. Masoro, E. J., B. P. Yu & H. A. Bertrand, 1982. Action of food restriction in delaying the aging process. Proceedings of the National Academy of Sciences of the United States of America 79: 4239–4241.CrossRefPubMedGoogle Scholar
  27. Miracle, M. R. & E. Vicente, 1983. Vertical distribution and rotifer concentrations in the chemocline of meromictic lakes. Hydrobiologia 104: 259–267.CrossRefGoogle Scholar
  28. Murphy, C. T., S. A. McCarroll, C. I. Bargmann, A. Fraser, R. S. Kamath, J. Ahringer, H. Li & C. Kenyon, 2003. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424: 277–284.CrossRefPubMedGoogle Scholar
  29. Park, H. G., K. W. Lee, S. H. Cho, H. S. Kim & M. M. Jung, 2001. High density culture of the freshwater rotifer, Brachionus calyciflorus. Hydrobiologia 446: 369–374.CrossRefGoogle Scholar
  30. Rao, G., E. N. Xia, M. J. Nadakavukaren & A. Richardson, 1990. Effect of dietary restriction on the age-dependent changes in the expression of antioxidant enzymes in rat liver. Journal of Nutrition 120: 602–609.PubMedGoogle Scholar
  31. Rea, S. & T. E. Johnson, 2003. A metabolic model for life span determination in Caenorhabditis elegans. Developmental Cell 5: 197–203.CrossRefPubMedGoogle Scholar
  32. Semenza, G. L., 1999. Regulation of mammalian O-2 homeostasis by hypoxia-inducible factor 1. Annual Review of Cell and Developmental Biology 15: 551–578.CrossRefPubMedGoogle Scholar
  33. Semsei, I., G. Rao & A. Richardson, 1989. Changes in the expression of superoxide dismutase and catalase as a function of age and dietary restriction. Biochemical and Biophysical Research Communications 164: 620–625.CrossRefPubMedGoogle Scholar
  34. Shen, C., D. Nettleton, M. Jiang, S. K. Kim & J. A. Powell-Coffman, 2005. Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans. The Journal of Biological Chemistry 280: 20580–20588.CrossRefPubMedGoogle Scholar
  35. Sohal, R. S. & R. Weindruch, 1996. Oxidative stress, caloric restriction, and aging. Science 273: 59–63.CrossRefPubMedGoogle Scholar
  36. Suga, K., D. Mark Welch, Y. Tanaka, Y. Sakakura & A. Hagiwara, 2007. Analysis of expressed sequence tags of the cyclically parthenogenetic rotifer Brachionus plicatilis. PLoS ONE 2: e671.CrossRefPubMedGoogle Scholar
  37. Ton, C., D. Stamatiou & C. Liew, 2003. Gene expression profile of zebrafish exposed to hypoxia during development. Physiological Genomics 13: 97–106.PubMedGoogle Scholar
  38. Yoshinaga, T., A. Hagiwara & K. Tsukamoto, 1999. Effect of conditioned media on the asexual reproduction of the monogonont rotifer Brachionus plicatilis O. F. Müller. Hydrobiologia 412: 103–110.CrossRefGoogle Scholar
  39. Yoshinaga, T., A. Hagiwara & K. Tsukamoto, 2000. Effect of periodical starvation on the life history of Brachionus plicatilis O.F. Müller (Rotifera): a possible strategy for population stability. Journal of Experimental Marine Biology and Ecology 253: 253–260.CrossRefPubMedGoogle Scholar
  40. Yoshinaga, T., A. Hagiwara & K. Tsukamoto, 2001. Why do rotifer populations present a typical sigmoid growth curve? Hydrobiologia 446: 99–105.CrossRefGoogle Scholar
  41. Yoshinaga, T., G. Kaneko, S. Kinoshita, K. Tsukamoto & S. Watabe, 2003. The molecular mechanisms of life history alterations in a rotifer: a novel approach in population dynamics. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology 136: 715–722.CrossRefGoogle Scholar
  42. Yoshinaga, T., Y. Minegishi, I. F. M. Rumengan, G. Kaneko, S. Furukawa, Y. Yanagawa, K. Tsukamoto & S. Watabe, 2004. Molecular phylogeny of the rotifers with two Indonesian Brachionus lineages. Coastal Marine Science 29: 45–56.Google Scholar
  43. Yu, B. P. & H. Y. Chung, 2001. Stress resistance by caloric restriction for longevity. Annals of the New York Academy of Sciences 928: 39–47.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yori Ozaki
    • 1
  • Gen Kaneko
    • 1
  • Yoshiko Yanagawa
    • 1
  • Shugo Watabe
    • 1
  1. 1.Department of Aquatic Bioscience, Graduate School of Agricultural and Life SciencesThe University of TokyoBunkyo, TokyoJapan

Personalised recommendations